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Resumen

En este artículo exploramos la interacción entre la geometría convexa y la pro-

babilidad en el estudio de la distribución de volumen en cuerpos convexos de alta

dimensión. Por una parte, un cuerpo convexo K en Rn se puede entender como un

espacio de probabilidad cuando se considera la medida de Lebesgue normalizada. Por

lo tanto, las herramientas probabilísticas son muy útiles en el estudio del compor-

tamiento de un vector aleatorio uniformemente distribuido en K. Esto nos lleva al

entendimiento de cómo el volumen se distribuye en un cuerpo convexo y a la obten-

ción de desigualdades geométricas. Por otra parte, cuando se consideran marginales

de menor dimensión de la medida de probabilidad uniforme sobre K, se abandona la

clase de las probabilidades uniformes sobre cuerpos convexos pero se permanece en la

clase de las probabilidades log-cóncavas. Muchas desigualdades geométricas se pueden

extender al contexto de las probabilidades log-cóncavas, llevándonos a desigualdades

funcionales para funciones log-cóncavas.

Abstract

In this paper we will explore the interaction between convex geometry and proba-

bility in the study of the distribution of volume in high-dimensional convex bodies. On
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the one hand, a convex body K in Rn can be understood as a probability space when

the normalized Lebesgue measure is considered. Thus, probabilistic tools become very

handy in the study of the behavior of a random vector uniformly distributed in K.

This leads to the understanding of how the volume is distributed in a convex body and

the obtention of geometric inequalities. On the other hand, when considering lower-

dimensional marginals of the uniform probability measure on K, we leave the class of

uniform probabilities on convex bodies but remain in the class of log-concave prob-

abilities. Many geometric inequalities can be extended to the context of log-concave

probabilities, leading to functional inequalities for log-concave functions.

1 Introduction

A convex body K ⊆ Rn is a subset of Rn which is convex, compact, and has non-empty
interior. For instance, the closed unit ball of any norm in Rn is a centrally symmetric
convex body. Conversely, any centrally symmetric convex body is the closed unit ball of
the norm defined by the Minkowski gauge

‖x‖ := inf{λ ≥ 0 : x ∈ λK}.

In this paper we will deal with questions that arise from the general problem of under-
standing how the mass is distributed in a high-dimensional convex body or, equivalently,
how a random vector uniformly distributed in K behaves. We say that a convex body K is
isotropic if it has volume (i.e., Lebesgue measure) |K| = 1, and satisfies the following two
conditions

•
∫
K

xdx = 0

•
∫
K

〈x, θ〉2dx = L2
K for every θ ∈ Sn−1.

Here Sn−1 denotes the Euclidean sphere in Rn. These two conditions mean that if X is a
random vector uniformly distributed on K, then for every θ ∈ Sn−1 the one-dimensional
random variable 〈X, θ〉 is centered and has variance L2

K , independent of the direction θ.
This constant LK is called the isotropic constant of the convex body K.

It is clear from the definition that ifK is an isotropic convex body then,
∫
K
|x|2dx = nL2

K

and that for any orthogonal map U ∈ O(n), U(K) is also isotropic and has the same
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isotropic constant. Besides, it is known that for any non-necessarily isotropic convex body
K there exists a unique (up to orthogonal transformations) non-degenerate affine map T ∈
GL(n) such that T (K) is isotropic. Consequently, the fact that a convex body is isotropic
can be regarded as a normalization condition and for every convex body K its isotropic
constant can be defined as the isotropic constant of its isotropic image. Furthermore,
this isotropic constant appears also as the solution to a minimization problem and can be
defined as

(1) nL2
K := min

{
1

|TK|1+ 2
n

∫
a+TK

|x|2dx : a ∈ Rn, T ∈ GL(n)

}
.

It is widely-known (see e.g. [37]) that among all the n-dimensional convex bodies, the
one with the smallest isotropic constant is the Euclidean ball Bn

2 , whose value is greater
than an absolute constant. i.e., a constant whose value does not depend neither on the
dimension or any other parameter.

LK ≥ LBn2 =
Γ
(
1 + n

2

) 1
n√

π(n+ 2)
≥ c.

However, it is not known which convex body maximizes the value of the isotropic constant,
neither whether its value is bounded from above by an absolute constant or not. This is
the statement of the following conjecture, which was posed by Bourgain in [23].

Conjecture 1.1 (Hyperplane conjecture). There exists an absolute constant C such that
for every n ∈ N and every n-dimensional convex body K

LK ≤ C.

This conjecture is known as the hyperplane conjecture since it is equivalent to the
following conjecture related to the maximal volume hyperplane section of a convex body.

Conjecture 1.2 (Hyperplane conjecture). There exists an absolute constant c such that
for every n ∈ N and every n-dimensional convex body K there exists a hyperplane H such
that

|K ∩H| ≥ c|K|
n−1
n .
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The hyperplane conjecture has been proved to be true when we restrict ourselves to
many families of convex bodies. However, the best general upper bound for the isotropic
constant of n-dimensional convex bodies is due to Klartag [32] and gives an estimate
depending on the dimension LK ≤ Cn

1
4 . This estimate improves the one of the order

LK ≤ Cn
1
4 log n, which had been given by Bourgain. Very recently, Lee and Vempala [35]

gave a different proof of Klartag’s estimate using techniques from stochastic differential
equations following ideas of Eldan.

A random vector X in Rn is said to be log-concave if it is distributed according to
a log-concave probability measure, i.e., a measure dµ with a density with respect to the
Lebesgue measure

dµ(x) = e−u(x)dx,

where u : Rn → (−∞,∞] is a convex function. For instance, a random vector uniformly
distributed on a convex body K is log-concave, since it is distributed according to the
probability measure dµ(x) = e−u(x)dx, where u(x) = log |K| if x ∈ K and u(x) = ∞
if x /∈ K. Furthermore, for any k-dimensional linear subspace E ∈ Gn,k, PE(X) is not
uniformly distributed on PE(K), but it is a log-concave random vector. In fact, the class
of log-concave random vectors is the smallest class, closed under limits, that contains the
linear projections of random vectors uniformly distributed on convex bodies.

A log-concave random vector X in Rn is called isotropic if

• EX = 0

• E〈X, θ〉2 = 1 for every θ ∈ Sn−1.

For instance, a random vector uniformly distributed on L−1
K K, where K is an isotropic

convex body or a standard Gaussian random vector in Rn are isotropic. Conjecture 1.1 can
be formulated in the more general setting of log-concave random vectors. This conjecture,
as stated before in the context of convex bodies, where the normalization is different than
in the setting of log-concave random vectors (notice the different value for E〈X, θ〉2 in both
settings), is a conjecture regarding the behavior of the linear functional fθ = 〈·, θ〉, when
it is applied to an isotropic log-concave random vector. More precisely, about its variance
(under the normalization considered for convex bodies).

Another important conjecture in Asymptotic Geometric Analysis regards the behavior
of the functional f = | · |2 applied to an isotropic log-concave random vector X. From the
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definition of isotropicity E|X|2 = n. The conjecture says that

Conjecture 1.3 (Variance conjecture). There exists an absolute constant C such that for
every n ∈ N and any isotropic log-concave random vector in Rn

Var |X|2 ≤ CE|X|2 = Cn.

This conjecture was considered by Bobkov and Koldobsky in the context of the Central
Limit Problem for isotropic convex bodies, in which the question of finding directions
θ ∈ Sn−1 for which the random variable 〈X, θ〉 is almost Gaussian, was considered (see
[22]). The variance conjecture is a stronger conjecture than the hyperplane conjecture (see
[27]) and the best general estimate of the constant in the inequality is due to Lee and
Vempala [35] gives

Var |X|2 ≤ Cn
1
2E|X|2

for every n-dimensional isotropic log-concave random vector. There is a third conjecture,
regarding the behavior of f(X) for any integrable locally Lipschitz function f which states
the following

Conjecture 1.4 (Kannan-Lovász-Simonovits conjecture). There exists an absolute con-
stant C such that for every n ∈ N, any centered log-concave random vector in Rn, and any
integrable locally Lipschitz function f

Var f(X) ≤ Cλ2
XE|∇f(X)|2,

where λ2
X = supθ∈Sn−1 E〈X, θ〉2.

This conjecture was proposed by Kannan-Lovász and Simonovits in the context of The-
oretical Computer Science in relation to the problem of finding an efficient algorithm to
compute the volume of a convex body K. It is equivalent to the following conjecture,
regarding the value of the constant in a Cheeger isoperimetric type inequality

Conjecture 1.5 (Kannan-Lovász-Simonovits conjecture). There exists an absolute con-
stant C such that for every n ∈ N, any centered log-concave probability measure µ in Rn,
and any Borel set A ⊆ Rn with µ(A) ≤ 1

2

µ+(A) ≥ C

λµ
µ(A)
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where λ2
µ = supθ∈Sn−1 E〈X, θ〉2 with X distributed according to µ and µ+(A) is defined as

µ+(A) = lim inf
ε→0

µ(Aε)− µ(A)

ε
,

being Aε = {x ∈ Rn : d(x,A) ≤ ε}.

The best known value of the constant in Conjecture 1.4 was proved by Lee and Vempala
[35] and gives an inequality

Var f(X) ≤ Cn
1
2λ2

XE|∇f(X)|2

for every isotropic log-concave random vector X and any integrable locally Lipschitz func-
tion f . Notice that since Conjecture 1.4 involves every integable locally Lipschitz function
f , by changing variables it can be considered only for isotropic random vectors. Notice also
that Conjecture 1.3 is the particular case of Conjecture 1.4 for f(x) = |x|2 and X isotropic.
Thus, the Kannan-Lovász Simonovits (KLS) conjecture is stronger than the variance con-
jecture. In [26], Eldan proved that the variance conjecture implies the KLS conjecture up
to a logarithmic factor in the value of the constant. Besides, in [21] the authors proved that
if a particular family of log-concave random vectors verify the KLS conjecture, then the
same family of log-concave vectors verify the hyperplane conjecture. We refer the reader
to [5] for an overview on these conjectures and related topics.

In the three aforementioned conjectures, the distribution of mass on a convex body (or
the distribution of a log-concave random vector X) is studied via studying the random
variable f(X), where f is some function from f : Rn → R. A second approach in order
to understand the distribution of a log-concave random vector X is the following: Take
X1, . . . , XN independent copies of X, construct a convex body with these random vectors,
and study the geometric properties of such random convex body. Typically, the random
convex bodies that are considered are random polytopes, defined as

KN := conv{±X1, . . . ,±XN}, LN := conv{X1, . . . , XN}

where convA denotes the intersection of all the convex sets that contain A, and is the
smallest convex set containing A.

A third approach in the study of the distribution of log-concave vectors is the study of
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their density functions, i.e., the study of log-concave functions and the inequalities that they
verify. It is well-known that many geometric inequalities have their functional counterpart.
For instance, consider the classical isoperimetric inequality, which states that for every
bounded Borel set A ⊆ Rn, if |∂A| denotes the surface measure of A, which can be defined
as m+(A) being m the Lebesgue measure, then

(2) |∂A| ≥ n|Bn
2 |

1
n |A|

n−1
n .

The isoperimetric inequality is equivalent to the following Sobolev inequality, which states
that for every compactly supported smooth function f

(3) ‖|∇f |‖1 ≥ n|Bn
2 |

1
n‖f‖ n

n−1
.

The set of log-concave integrable functions contains the set of convex bodies that contain
the origin via one of the following injections

• K → χK

• K → e−‖x‖K

and, as discussed before, it is the smallest class of functions, closed under limits, that
contains the densities of the marginals of uniform measures on higher dimensional convex
bodies. In view of such a close relation between convex bodies and log-concave functions,
it is reasonable to ask whether some purely geometric inequalities and concepts could be
extended to the more general framework of log-concave functions.

In this paper we will explore these three approaches and discuss some of the most
recent results proved by the author. The paper is organised as follows: In Section 2 we
will discuss our results related to the three aforementioned conjectures. Section 3 will be
devoted to our results concerning the geometry of random convex bodies. This section
will be divided in two subsections, being the first of them devoted to the study of the
hyperplane conjecture on random polytopes, and the second one of them to the study of
some geometric parameters of random convex bodies. Finally, in Section 4 we will study
extensions of purely geometric concepts and inequalities to the framework of log-concave
functions.

13



2 The hyperplane conjecture, the variance conjecture, and the KLS conjecture

In this section we are going to explore the first of the previously mentioned approaches for
the study of the distribution of mass in an n-dimensional convex body, i.e., the study of
the distribution of functionals applied to an isotropic random vector.

Let us recall that a polytope P is the convex hull of a finite number of points P =

conv{P1, . . . , PN} and that for any convex body K ⊆ Rn and any ε > 0, there exists a
polytope Pε such that

Pε ⊆ K ⊆ (1 + ε)Pε.

Since there exists an affine map T such that TPε is isotropic, taking into account (1), we
have that

nL2
K ≤

1

|TK|1+ 2
n

∫
TK

|x|2dx ≤ 1

|TPε|1+ 2
n

∫
(1+ε)TPε

|x|2dx

=
(1 + ε)n+2

|TPε|1+ 2
n

∫
TPε

|x|2dx = n(1 + ε)n+2L2
Pε .

Choosing ε = 1
n
we obtain the following

Proposition 2.1. There exists an absolute constant C such that for any convex body K ⊆
Rn there exists a polytope P such that

LK ≤ CLP .

As a consequence of this proposition, if the family of polytopes verify Conjecture 1.1,
then every convex body does. In [2], the following to estimates for the isotropic constant
of a polytope were proved, extending known results for symmetric polytopes to the case
of non-necessarily symmetric polytopes. The first one gives an estimate in terms of the
number of vertices.

Theorem 2.2. There exists an absolute constant C such that for every polytope P ⊆ Rn

with N vertices we have
LP ≤ C logN.

The second one gives an estimate in terms of the number of facets ((n− 1)-dimensional
faces).
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Theorem 2.3. There exists an absolute constant C such that for every polytope P ⊆ Rn

with N facets we have

LP ≤ C

√
log

N

n
.

In [8], we followed a different approach to give an upper bound for the isotropic constant
of a polytope in terms of the number of vertices and obtained the following result, which
proves that the class of polytopes with a number of vertices proportional to the dimension
verify Conjecture 1.1.

Theorem 2.4. There exists an absolute constant C such that for every polytope P ⊆ Rn

with N vertices we have

LP ≤ C

√
N

n
.

The approach followed to prove Theorem 2.4 for symmetric polytopes is the following:
For every symmetric polytope P with N vertices there exists an n-dimensional linear sub-
space E of RN , E ∈ GN,n and an isomorphism T : Rn → E such that TP = PEB

N
1 , the

projection onto E of BN
1 = {x ∈ RN : ‖x‖1 ≤ 1}. Thus, in view of (1),

nL2
P ≤

1

|PEBN
1 |

2
n

1

|PEBN
1 |

∫
PEB

N
1

|x|2dx.

In order to bound this quantity from above by a quantity independent of E, we bound the
volume of any projection of BN

1 form below using the fact that BN
1 contains a Euclidean

ball of radius 1√
N

and then there is an absolute constant c such that

|PEBN
1 |

2
n ≥ 1

N
|PEBN

2 |
2
n =

1

N
|Bn

2 |
2
n ≥ c

Nn
,

and bound from above the average of |x|2 over PEBN
1 . To do that, we extend Cauchy’s

formula for projections onto hyperplanes and show that PEBN
1 can be decomposed as

the disjoint union (up to measure 0 sets) of projections of some n-dimensional faces of
BN

1 , where for each face F , PE : F → PEF is an affine isomorphism. This leads us to
the existence of some numbers {ci}li=1 and some n-dimensional faces {Fi}li=1 such that∑l

i=1 ci = 1 and

1

|PEBN
1 |

∫
PEB

N
1

|x|2dx =
l∑

i=1

ci
1

|Fi|

∫
Fi

|PEx|2dx ≤
l∑

i=1

ci
1

|Fi|

∫
Fi

|x|2dx.
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Since every n-dimensional face of BN
1 is a regular simplex ∆n, for every 1 ≤ i ≤ l

1

|Fi|

∫
Fi

|x|2dx =
1

|∆n|

∫
∆n

|x|2dx

and then
1

|PEBN
1 |

∫
PEB

N
1

|x|2dx ≤ 1

|∆n|

∫
∆n

|x|2dx =
2

n+ 2
,

which gives us the estimate. in the case of non-symmetric polytopes the same approach is
taken but considering n-dimensional projections of the N -dimensional regular simplex.

The same approach as the one used in the proof of the latter theorem has been considered
in order to study the variance conjecture (Conjecture 1.3) for projections of Bn

1 (and more
generally of Bn

p = {x ∈ Rn : |x|P ≤ 1}. In such case, projections of Bn
p onto lower-

dimensional subspaces are not isotropic in general. However, since Conjecture 1.3 is the
particular case of Conjecture 1.4 for f = | · |2 and isotropic vectors, one can also consider
the same particular case without the isotropicity condition, which leads us to

Conjecture 2.5 (General variance conjecture). There exists an absolute constant C such
that for every n ∈ N and any log-concave random vector in Rn

Var |X|2 ≤ Cλ2
XE|X|2,

where λ2
X = supθ∈Sn−1 E〈X, θ〉2.

This conjecture can be considered for random vectors uniformly distributed on projec-
tions of the Bn

p . In the case of projections onto hyperplanes, we prove the following

Theorem 2.6. For every 1 ≤ p ≤ ∞, there exists a constant Cp such that for any hyper-
plane H, if X is a random vector uniformly distributed on PHBn

p

Var |X|2 ≤ Cpλ
2
XE|X|2.

Furthermore, Cp ≤ C log(1 + p) if 1 ≤ p ≤ n and Cp ≤ C if p ≥ n, where C is an absolute
constant.

Notice that even though the constant Cp depends on the value of p, it does not depend
on the value of n or on the hyperplane H. The cases p = 1,∞, were considered in [4]. In
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these cases we are considering families of polytopes and the same approach as in Theorem
2.4 could be used. The rest of the cases were considered in [6], where a similar approach
was taken, relying heavily in a probabilistic representation of the cone measure on the
boundary of Bn

p .
In the case p =∞, this approach can be used for lower-dimensional projections. In [7]

we have shown the following

Theorem 2.7. There exists an absolute constant C such that for any 1 ≤ k ≤
√
n and

any E ∈ Gn,n−k, if X is a random vector uniformly distributed on PEBn
p then

Var |X|2 ≤ Cλ2
XE|X|2.

3 The geometry of random convex sets

In this section we explore the second mentioned approach for the study of the distribution
of log-concave random vectors. Given a log-concave random vector X, we will study the
geometry of a random convex body KN generated by N copies of X. Many geometric
parameters can be considered, such as the volume, the surface area or the mean width
and, since these geometric parameters of random convex bodies are random variables, their
expectation, variance, or whether their value is of some order with high probability (tending
to 1 as the dimension grows to infinity) is studied.

We treat separately the case of the isotropic constant of random polytopes. The purpose
which started the study of this parameter was the search for counterexamples for the
hyperplane conjecture, since even though an explicit construction would not be given,
maybe one could show that with positive probability there is an n-dimensional random
polytope Pn ⊆ Rn such that LPn ≥ Cn, with Cn tending to ∞. On the contrary, for the
distributions considered up to now it turned out that the isotropic constant is bounded with
high probability. This will be treated in the first subsection, while the second subsection
will be devoted to the study of expectations of geometric parameters, focusing on the mean
width.

3.1 The hyperplane conjecture on random polytopes

Since the remarkable result of Gluskin on the diameter of the diameter of the Minkowski
compactum, [29] random polytopes are known to provide many examples of convex bodies
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(and related normed spaces) with a pathologically bad behavior of various parameters of
a linear and geometric nature (we refer to the survey [36] and references therein). For this
reason, they were a natural candidate for a potential counterexample for the hyperplane
conjecture and in [34] the authors studied the value of the isotropic constant of Gaussian
random polytopes and showed that they did not provide a counterexample. On the contrary,
they verified the hyperplane conjecture with high probability. More precisely, they showed

Theorem 3.1 (Klartag-Kozma, (2006)). Let X1, . . . XN be independent copies of a standard
Gaussian random vector X in Rn (N ≥ n) and let KN = conv{±X1, . . . ,±XN}. Then

LKN ≤ C

with probability greater than 1− c1e
−c2n, where C, c1, c2 are absolute constants.

In the same paper the authors also considered the non-symmetric case, as well as some
other distributions for the random vector X. In all the cases considered in [34] the random
vector X had independent coordinates. Motivated by this result, other distributions for the
random vector X, with non-necessarily independent coordinates, were considered. Follow-
ing the approach initiated by Klartag and Kozma, we proved in [1] that random polytopes
generated by random vectors uniformly distributed on the Euclidean sphere Sn−1 also verify
the hyperplane conjecture with high probability. Namely, we proved the following

Theorem 3.2. Let X1, . . . XN be independent copies of a random vector X uniformly dis-
tributed on Sn−1 (N ≥ n) and let KN = conv{±X1, . . . ,±XN}. Then

LKN ≤ C

with probability greater than 1− c1e
−c2n, where C, c1, c2 are absolute constants.

In the case in which X is an isotropic log-concave vector, the following estimate was
proved in [14]

Theorem 3.3. Let X1, . . . , XN be independent copies of an isotropic log-concave random
vector X (N ≥ n) and let KN = conv{±X1, . . . ,±XN}. Then

LKN ≤ C

√
log

2N

n
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with probability greater than 1− c1e
−c2
√
n, where C, c1, c2 are absolute constants.

This estimate was simultaneously proved in [28] and improves the ones known for gen-
eral polytopes in the range n ≤ N ≤ e

√
n. Besides, other distributions for X have been

considered, obtaining similar results. For instance, random vectors inside an unconditional
convex body (invariant under reflections on the coordinate hyperplanes) (see [24]), or ran-
dom vectors uniformly distributed on the boundary of Bn

p distributed according to the cone
measure, extending the result of Theorem 3.2 (see [30]).

3.2 Geometric parameters of random convex bodies

In this section we will study the expectation of some random parameters associated to
random convex bodies generated by log-concave random vectors. We will focus on the
mean width. First of all, let us give some definitions.

The Minkowski sum of two sets A,B ⊆ Rn is the set A+B := {x+ y : x ∈ A, y ∈ B}.
If A and B are convex bodies then also A+B is. Steiner’s formula says that for any convex
body K, the volume of K + tBn

2 is a polynomial of degree n in t.

|K + tBn
2 | =

n∑
k=0

(
n

k

)
Wk(K)tk.

The numbers Wk(K) that appear as coefficients of this polynomial are called the quer-
maßintegrals of K and can be interpreted geometrically in several ways. For instance,
W0(K) is the volume of K, nW1(K) is the surface area of K and Wn−1(K) equals 2w(K),
where w(K) is the mean width of the convex body K, i.e., half the average over the sphere
of the distance between the closest hyperplanes orthogonal to θ that have K contained in
between.

Many identities and inequalities are known to be satisfied between the quermaßintegrals

of a convex body. In particular, calling Qk(K) =
(
Wn−k(K)

|Bn2 |

) 1
k , we have, by Kubota’s

formula, that

Qk(K) =

(
1

|Bk
2 |

∫
Gn,k

|PE(K)|dµ(E)

) 1
k

,

where dµ is the Haar probability measure on the Grassmanian manifold. Besides, with this
notation, we have that the sequence Qk(K) is decreasing in k. In [25], the authors proved
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the following

Theorem 3.4 (Dafnis, Giannopoulos, Tsolomitis (2013)). Let X1, . . . , XN be independent
copies of an isotropic log-concave random vector X and let KN = conv{±X1, . . . ,±XN}.
Then, if n ≤ N ≤ e

√
n we have that

c1

√
log

2N

n
≤ EQn(KN) ≤ · · · ≤ EQ1(KN) ≤ c2

√
logN.

In particular, if n2 ≤ N ≤ e
√
n we have that for every 1 ≤ k ≤ n EQk(KN) ∼

√
logN .

However, this estimate is not sharp in the range n ≤ N ≤ n2. In [15] and [16] we took care
of the case k = 1 in this range of N . Notice that

Q1(KN) = w(KN) =

∫
Sn−1

hKN (θ)dσ(θ),

where
hKN (θ) = max

1≤i≤N
|〈Xi, θ〉|

and σ denotes the uniform probability measure on Sn−1. Thus, the expected value of the
mean width of a random polytope is an average over the sphere of the expected value of the
maximum of the random variables |〈Xi, θ〉|. Besides, for any vector y ∈ RN , the expected
value of max1≤i≤N yi|〈Xi, θ〉| is approximately equal (up to absolute constants) to the value
of the Luxemburg norm

‖y‖Mθ
:= inf

{
s > 0 :

N∑
i=1

Mθ

(
|yi|
s

)
≤ 1

}
,

where Mθ is an Orlicz function that depends on the distribution of 〈X, θ〉. Thus,

EhKN (θ) ∼ ‖(1, . . . , 1)‖Mθ
.

Using this representation for the expected value of the support function of a random poly-
tope, we computed in [15] the expected value of the support function in the coordinate
directions of a random polytope generated by random vectors uniformly distributed in Bn

p .

Theorem 3.5. There exist absolute constants c, c1, c2 such that if X1, . . . XN are indepen-
dent copies of a random vector X uniformly distributed on |Bn

p |−
1
nBn

p (n ≤ N ≤ ecn) and
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KN = conv{±X1, . . . ,±XN}, then

c1(logN)
1
p ≤ EhKN (e1) ≤ c2(logN)

1
p .

In [16] we used the representation of the expected value of the support function ofKN as
an Orlicz norm, together with the Central Limit Theorem proved by Klartag [33], to show
that the expected value of the mean width of a random polytope generated by isotropic
log-concave random vectors is of order

√
logN also in the range n ≤ N ≤ n2.

Theorem 3.6. There exist absolute constants c1, c2 such that if X1, . . . XN are indepen-
dent copies of an isotropic log-concave random vector X (n ≤ N ≤ e

√
n) and KN =

conv{±X1, . . . ,±XN}, then

c1

√
logN ≤ Ew(KN) ≤ c2

√
logN.

The aforementioned representation leads in a natural way to consider the Luxemburg
norm of other vectors and not only of the vector (1, . . . , 1). This corresponds geometrically
with considering the expected value of a perturbed random polytope. If the random vector
encoding the perturbation is chosen at random, several high probability results were given
in [17] depending on the distribution of the perturbation vector. For instance, for Gaussian
perturbation we have the following

Theorem 3.7. Let X1, . . . , XN be independent copies of an isotropic log-concave random
vector in Rn (n ≤ N ≤ e

√
n) and let G be a Gaussian random vector in RN independent

of X1, . . . , XN . Denote by KN,G = conv{±G1X1, . . . ,±GNXN}. Then there exist absolute
constants c, c1, c2 such that for every t > 0

PG
(
c1(1− t) ≤ EX1,...,XNw(KN,G)

logN
≤ c2(1 + t)

)
≥ 1− 1

N ct2
.

Also the case in which the perturbation vector is uniformly distributed on SN−1 or in
BN
p were considered.
Besides considering the random polytope generated by the random vectors, one can

consider other convex bodies whose support function not only involves the maximum of the
random variables |〈Xi, θ〉|, but other order statistics. More precisely, givenX1, . . . XN ∈ Rn,
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for any 1 ≤ ` ≤ N and any q ≥ 1, we consider KN,`,q the convex body whose support
function is given by

hKN,`,q(θ) :=

(
1

`

∑̀
k=1

k-max
1≤i≤N

|〈Xi, θ〉|q
)1/q

.

If ` = 1 this convex body is the polytope conv{±X1, . . . ,±XN}. Taking X1, . . . , XN

random vectors, KN,`,q is a random convex body. In the following theorem, proved in [18],
we extend the result of Theorem 3.6 to this larger family of random convex bodies

Theorem 3.8. Let n,N ∈ N with n ≤ N ≤ e
√
n and let X1, . . . , XN be independent copies

of an isotropic log-concave random vector X in Rn. Then, for all 1 ≤ ` ≤ N and any
q ≥ 1,

c1 min
{

max
{√

q,
√

log(N/`)
}
,
√

logN
}
≤ Ew

(
KN,`,q

)
≤ c2 min

{
max

{√
q,
√

log(N/`)
}
,
√

logN
}
,

where c1, c2 are absolute constants.

In [9] we considered a different geometric parameter, the so called mean outer radii of
a convex body. For a convex body K ⊆ Rn, the k-th mean outer radius of K, 1 ≤ k ≤ n,
is defined as

R̃k(K) =

∫
Gn,k

R(PEK) dµ(E),

where R(PEK) denotes the circumradius of the projection of K onto E, i.e., the radius of
the smallest Euclidean ball containing PEK. We showed the following

Theorem 3.9. There exist absolute constants c1, c2 such that if X1, . . . XN are indepen-
dent copies of an isotropic log-concave random vector X (n ≤ N ≤ e

√
n) and KN =

conv{±X1, . . . ,±XN}, then for every 1 ≤ k ≤ n

c1 max
{√

k,
√

logN
}
≤ ER̃k(KN) ≤ c2 max

{√
k,
√

logN
}
.

Furthermore, a high probability result was proved which gives the right order as long
as n2 ≤ N ≤ e

√
n. A different proof of this result has later been shown in [28].
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4 Geometric inequalities for log-concave functions

In this section we will explore the third approach mentioned in the introduction and see
how some geometric concepts and inequalities are extended to the setting of log-concave
functions, which are the densities of lower-dimensional projections of random vectors uni-
formly distributed on convex bodies. We will focus on the concept of volume ratio and on
Rogers-Shephard type inequalities.

By John’s theorem [31], for every convex body K ⊆ Rn there exists a unique ellipsoid
E(K) that maximizes the volume among all the ellipsoids contained in K. The volume
ratio of a convex body K ⊆ Rn is then defined as

v.rat(K) :=

(
|K|
|E(K)|

) 1
n

.

This is an affine invariant quantity, which can be used to measure how far is K from
an ellipsoid. If E(K) = Bn

2 it is said that K is in John’s position and this position is
characterized by the fact that the Euclidean ball is contained in K, together with the
existence of some contact points u1, . . . um ∈ ∂K ∩ Sn−1 that give a decomposition of the
identity. This characterization, together with Brascamp-Lieb inequality provide the convex
bodies that maximize the volume ratio (see [20])

• v.rat(K) ≤ v.rat(Bn
∞) if K is centrally symmetric,

• v.rat(K) ≤ v.rat(∆n) if K is not necessarily centrally symmetric.

When passing from the context of convex bodies to the context of integrable log-concave
functions via the injection K → χK , it is clear that the concept of volume is generalized
by the integral. We generalize the concept of ellipsoid by ellipsoidal functions, which are
functions proportional to the characteristic function of an ellipsoid Ea = aχE . In [12] we
proved that

Theorem 4.1. Let f : Rn → R be an integrable log-concave function. There exists a unique
ellipsoidal function E(f) = E t0‖f‖∞ for some t0 ∈ [e−n, 1], such that

• E(f) ≤ f

•
∫
Rn
E(f)(x)dx = max

{∫
Rn
Ea(x)dx : Ea ≤ f

}
.
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This ellipsoidal function is called the John’s ellipsoid of f and is denoted by E(f). Thus,
we can define the integral ratio of an integrable log-concave function in a similar way as
the volume ratio like

I.rat(f) =

( ∫
Rn f(x)dx∫

Rn E(f)(x)dx

) 1
n

.

We also showed which log-concave functions maximize the integral ratio in the even and
non-even case.

Theorem 4.2. Let f : Rn → R be an integrable log-concave function. Then,

I.rat(f) ≤ I.rat(gc),

where gc(x) = e−‖x‖∆n−c for any c ∈ ∆n. Furthermore, there is equality if and only if
f
‖f‖∞ = gc ◦ T for some affine map T and some c ∈ ∆n. If we assume f to be even, then

I.rat(f) ≤ I.rat(g),

where g(x) = e−‖x‖Bn∞ , with equality if and only if f
‖f‖∞ = g ◦ T for some linear map

T ∈ GL(n).

In [3], the concept of volume ratio was used to give a stability version of the affine
isoperimetric inequality. Before stating it let us introduce some concepts. Given a convex
body K ⊆ Rn, its polar projection body Π∗(K) is the unit ball of the norm defined by

‖x‖Π∗(K) = |x||Px⊥K|.

The quantity |K|n−1|Π∗(K)| is an affine invariant, i.e., |TK|n−1|Π∗(TK)| = |K|n−1|Π∗(K)|
for any non-degenerate affine map T . Petty’s projection inequality [38] states that for any
convex body K ⊆ Rn

(4) |K|n−1|Π∗(K)| ≤ |Bn
2 |n−1|Π∗(Bn

2 )|,

with equality if and only if K is an ellipsoid. This inequality is known as the affine
isoperimetric inequality and it implies the isoperimetric inequality (2). In [3], we gave
the following stability version of Petty’s projection inequality
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Theorem 4.3. Let K ⊆ be a convex body. Then

|K|n−1|Π∗(K)| ≥ 1

v.rat(K)n
|Bn

2 |n−1|Π∗(Bn
2 )|.

In the same way as the isoperimetric inequality (2) is equivalent to Sobolev’s inequality
(3), the affine isoperimetric inequality has an equivalent functional form (see [42], which
states that for any f ∈ W 1,1(Rn) =

{
f ∈ L1(Rn) : ∂f

∂xi
∈ L1(Rn) ∀i

}
,

(5) ‖f‖ n
n−1
|Π∗(f)|

1
n ≤ |Bn

2 |
2|Bn−1

2 |
,

where Π∗(f) is the unit ball of the norm

‖x‖Π∗(f) =

∫
Rn
|〈∇f(y), x〉|dy.

In the case of log-concave functions, we proved in [12] a stability version to this affine
Sobolev’s inequality, involving the integral ratio in the same spirit as Theorem 4.3.

Theorem 4.4. Let f ∈ W 1,1(Rn) be a log-concave function. Then

‖f‖ n
n−1
|Π∗(f)| 1n(
|Bn2 |

2|Bn−1
2 |

) ≥ 1

e

∫
Rn f(x) log( f(x)

‖f‖∞ )dx
n
∫
Rn f(x)dx ‖f‖

1
n∞

( ∫
Rn f(x)dx∫

Rn f
n
n−1 (x)dx

)n−1
n

I.rat(f)

.

Petty’s projection inequality (4) has a reverse form, Zhang’s inequality [41], which states
that the affine invariant quantity |K|n−1|Π∗(K)| is minimized when K is a simplex.

(6) |K|n−1|Π∗(K)| ≥ |∆n|n−1|Π∗(∆n)|.

In [13] we studied the properties of the θ-convolution bodies of two convex bodies K,L,
which are defined as

K +θ L = {x ∈ K + L : |K ∩ (x− L)| ≥ θmax
z∈Rn
|K ∩ (z − L)|}

and gave a different proof and an extension of inequality (6) as well as recovered the
classical Rogers-Shephard inequality (see [39] and [40]), which states that for any convex
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body K ⊆ Rn

(7) |K + (−K)| ≤
(

2n

n

)
|K|

and, more generally, for any two convex bodies K,L ⊆ Rn

(8) max
x0∈Rn

|K ∩ (x0 − L)||K + L| ≤
(

2n

n

)
|K||L|.

In [10] we studied the properties of a more generally defined convolution bodies and
proved the following extension of Rogers-Shephard inequality (7), which involves the surface
area measure of convex bodies.

Theorem 4.5. Let K,L ⊆ Rn be two convex bodies. Then

|K + L| ≤
(

2n

n

)
|K||∂L|+ |L||∂K|

2 maxx0∈Rn |∂(K ∩ (x0 − L))|
.

Rogers and Shephard also proved in [40] the following volume inequality for the volume
of the convex hull of two convex bodies

(9) |K ∩ L||conv{K,−L}| ≤ 2n|K||L|

They proved that there is equality when L = K in this inequality if and only if K is a
simplex with 0 as a vertex and they suggested that it is likely that equality is attained if
and only if K = L is a simplex and 0 is one of its vertices, but they did not prove that
equality can only be attained when L = K.

In [11] we proved the following three theorems, which give functional extensions to
(8), Theorem 4.5, and (9). The first theorem is the following, which extends (8). In the
statement of the theorem f ∗ g is the convolution of f and g, which is defined by

f ∗ g(x) =

∫
Rn
f(z)g(x− z)dz

and it represents the functional extension of |K ∩ (x − L)| for any x ∈ Rn. f ? g is the
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Asplund product of two log-concave functions is defined by

f ? g(x) = sup
z∈Rn

f(z)g(x− z)

and it represents the functional version of the sum in the context of log-concave functions,
as − log f ? g is a convex function whose epigraph is the Minkowski sum of the epigraphs
of − log f and − log g.

Theorem 4.6. Let f, g : Rn → R be two integrable log-concave functions with full-
dimensional support such that f and g are continuous when restricted to their supports.
Then

‖f ∗ g‖∞
∫
Rn
f ? g(x)dx ≤

(
2n

n

)
‖f‖∞‖g‖∞

∫
Rn
f(x)dx

∫
Rn
g(x)dx.

Furthermore, this inequality becomes an equality if and only if f(x)
‖f‖∞ = g(−x)

‖g‖∞ is the charac-
teristic function of an n-dimensional simplex.

The second theorem is the following, extending Theorem 4.5. In the notation used in
the theorem, the quermaßintegral W1 (surface area) of a log-concave function is defined by
integrating the corresponding quermaßintegral on the level sets

W1(f) :=

∫ ∞
0

W1({x ∈ Rn : f(x) ≥ t})dt.

Theorem 4.7. Let f, g : Rn → R be two integrable log-concave functions with full-
dimensional support and continuous when restricted to their supports. Then∫

Rn
f ? g(x)dx ≤

(
2n

n

)
‖f‖∞‖g‖∞

W1(g)
∫
Rn f(x)dx+W1(f)

∫
Rn g(x)dx

2 maxx0∈RnW1(f(·)g(x0 − ·))
.

Furthermore, when n ≥ 3 this inequality becomes an equality if and only if f(x)
‖f‖∞ = g(−x)

‖g‖∞ is
the characteristic function of an n-dimensional simplex.

The third theorem not only generalizes inequality (9) but strengthens it. It states the
following

Theorem 4.8. Let f, g : Rn → R be two integrable log-concave functions with full-
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dimensional supports and continuous when restricted to them. Then∫
Rn

√
f(x)g(−x)dx

∫
Rn
f ? g(2x)dx ≤ 2n

∫
Rn
f(x)dx

∫
Rn
g(x)dx.

Equality holds if and only if the following two conditions are satisfied:

• supp f = −supp g is a translation of a cone C with vertex at 0 with simplicial section,
and

• f(x) = c1e
−〈a,x〉 on supp f and g(x) = c2e

−〈b,x〉 on supp g for some c1, c2 > 0 and
some a, b ∈ Rn such that 〈a, x〉 ≥ 0 ≥ 〈b, x〉 for every x ∈ C.

A more general result, without characterizing the equality cases has been proved in [19].
As a consequence one obtains the following geometric inequality, which improves (9)

|K ∩ L||conv{K,−L}| ≤
∣∣∣∣(K◦ − L◦2

)◦∣∣∣∣ |conv{K,−L}| ≤ 2n|K||L|,

and allows the characterization of the equality cases in (9) that were conjectured by Rogers
and Shephard. Here K◦ denotes the polar body of a convex body that contains the origin
is defined as

K◦ = {x ∈ Rn : 〈x, y〉 ≤ 1 ∀y ∈ K}.

When K is centrally symmetric it is the unit ball of the dual norm associated to K.
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