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The Two Weight Problem for Operators
in the Upper Half-Plane

LUZ M. FERNÁNDEZ-CABRERA - JOSÉ L. TORREA

0. - Introduction

Let f - f denote the conjugate function operator on the torus T ~

[-1 /2,1 /2), and consider the weighted L-inequality

The question, raised for the first time by Muckenhoupt, is the following:
Find all v(x) (resp. all u(x)) such that (0.1) holds for some u(x) (resp. all

Using complex-variable methods the following simple answer was given
by Koosis: (0.1) holds for some non-trivial u(x) if and only if v-1 E L 1 (T), and
it holds for some non-trivial if and only if u E L 1 (T); see [K].

A more systematic study of this kind of problem was made later on by
different authors. The general setting is the following.

Let , . 1, M I , (It’ m2 be two measure spaces and T be a linear1 l 2 

operator. Find conditions on v(x) (resp. u(x)) such that

. 

is satisfied for some u(x) (resp. v(x) where u and v are positive measurable
functions).

Pervenuto alla Redazione il 15 Luglio 1992.
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Essentially two methods are used to deal with this problem. The first
one is a constructive method, which means the following: given a weight v a
new weight u is constructed such that (0.2) is satisfied. The second one uses
non-constructive techniques of factorizarion of operators and then the existence
of a certain u satisfying (0.2) is proved. The first method together with the
Ap-weights theory was used in [C-J] in order to prove the following results.

0.3 THEOREM. Let M be the Hardy-Littlewood maximal operator on Il~n

and assume 1  p  oo. The following conditions are equivalent:

(i) There exists 0 such that

(ii) v belongs to the class D;, i. e.

0.4 THEOREM. Let 1  p  oo; on the following conditions are

equivalent:

(i) There exists u 0- 0 such that

for all singular integral operators S.

(ii) v belongs to the class Dp, i. e.

The following theorems were also proved using the constructive method.

0.5 THEOREM. ([G-G]). Let I  p  oo; on the following conditions
are equivalent:
(i) There exists 0 such that

(ii) u belongs to the class Zp, i. e.
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0.6 THEOREM. ([H-M-S]). Let I, denote the fractional integral operator

and assume 1  , p q  00, ~ ~ ~ - 1. Then the following conditions are
equivalent: 

q p n

(i) There exists 0 such that

(ii) v belongs to the class D~, i. e.

0.7 THEOREM. Let M,~ denote the fractional maximal operator

and assume 1  p, q  &#x3E; - 1. Then the following conditions are
q p n

equivalent: 
q p n

(i) There exists u 0- 0 such that

(ii) v belongs to the class Dp*", i. e.

The non-constructive method was developed by Rubio de Francia and with
this method he proved Theorems 0.3, 0.4, 0.5, 0.6 and 0.7 for p = q (see [GC-R
de F], Chapt. VI] for a complete description of the method). The method of
Rubio cannot be applied in the cases Pfq but, being non-constructive, it can
be applied to a huge class of operators and measure spaces; in particular the
Ap-theory is not needed.

This paper grew out of an effort to understand better the two methods
mentioned above, and, as a consequence, to solve the general problem (0.2)
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for operators acting on the upper half-plane (see Section 1), in which case the

Ap-theory is not available. We also look at both methods from the point of
vew of vector-valued function theory: then maximal operators can be handled
as Roo-valued linear operators.

The organization of the paper is as follows. In Section 1 we introduce
the operators in the upper half-plane for which we want to solve problem
(0.2); we also prove some estimates (see Proposition 1.7) that have interest in
themselves and that we shall use later. Section 2 contains the basic lemmas that
are needed for the methods mentioned above; both methods have a common part
of strategy: given a function f, decompose it as f1 + f2, where f1 = and B
is a certain ball, while T f2 is estimated in both methods with a local Loo-bound.
In this estimate, when working in Banach lattices X, it is natural to consider a
new class D~ of weights (see (2.15)); the class solves problem (0.2) for
fractional maximal operators acting on lattice-valued functions; the classes D~,
DJ, 0  q  n, solve the problem for the Poisson integral and the fractional
integral operator in the upper half-plane (even with Banach-valued functions),
whereas the class Dp solves the problem for the generalization of the Riesz
transform with U.M.D.-valued functions. All these results are proved in Section
3 (Theorems 3.5, 3.9, 3.1 and 3.7). In Section 4 we see that the class is
an intermediate class between DJ and D;,I. 

’

1. - Notation and background

We shall consider the following operators:

where 1 denotes the upper half-plane R" x [0, oo), cn is a constant depending
on the dimension and B(x, r) is the ball (y E x - y  r 1.

The operator P is the Poisson-Integral, Mo was introduced in [F-S] and
and T,~ were studied in [R-T].
Given a measure on 

1 
we shall say, as usual, that dj.l is a Carleson

measure if there exists a constant C such that for any ball B = B(x, r) in l~n
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we have ~c(B)  ] where B = f(y,t) + t  r} and B ] stands
for the Lebesgue measure of B.

1.1 REMARK. It is known (see [R-T]) that if ii is a Carleson measure
then and 7~ map into and P and Qi map
L1(Rn, dx) into 

Moreover if a weight v belongs to Dp then there exists a weight u such
that Mo maps LP(v) into (see [F-T]).

On the other hand it is known that if for an open set 8 c one defines

then dp is a Carleson measure if and only if  (see [A-B] and
[J]).

1.2 REMARK. The operators defined above generalize several known

operators. In particular:

. the fractional maximal operator of order 

(observe that Mo = M is the Hardy-Littlewood maximal operator);

0 the fractional integral

. the Riesz transforms

Now we shall consider vector-valued extensions of the above operators.
We observe that T,~ and P are positive ( f &#x3E; 0 ~ T,~ f &#x3E; 0 and P f &#x3E; 0)

and linear operators. Therefore given any Banach space E we can consider the
vector-valued extensions Try and P such that

where f is an E-valued strongly measurable function and e* E E*. It
is well known (see [L-T]) that the extensions ’1’1 and P have the same
boundedness properties as T, and P. In particular, if do is a Carleson measure,
’1’1 maps into and P maps into

dj.l) for any Banach space E.
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We recall that the class of the Banach spaces E such that the
Riesz transforms it;, are bounded from dx) into has been
characterized by Burkholder and Bourgain (see [Bk] and [B]) ant it is denoted
by U.M.D. Therefore choosing the Carleson measure t) = dx (9 bo(t), where
60 is Dirac’s delta, it is clear that if the Q/s are bounded from Lk(Rn, dx) into

then E must be in the U.M.D. class. On the other hand

and therefore if E is U.M.D., using Remark 1.1, for any Carleson measure dj.l
we have

1.4 DEFINITION. Let (Q, A, v) be a complete a -finite measure space. A
Banach space X consisting of equivalence classes, modulo equality almost
everywhere, of locally-integrable real-valued functions on SZ is called a K6the
function space if the following two conditions hold:

(1) If Ig(w)1 a. e. on S2 with f measurable and g E X, then f E X
llgll.

(2) For every E E A with v(E)  +oo the characteristic function XE of E
belongs to X.

Every Kbthe function space is a Banach lattice with the obvious order

( f &#x3E; 0 if f (w) &#x3E; 0 a.e.).
Given a measurable function g on Q such that g f E for every f E X,

one defines an element x* 9 in X* by

The linear space of these x* 9 is denoted by X’. It is known (see [L-T]) that
X’ is a norming subspace of X* if and only if whenever f fn I’, 1 and f are
non-negative elements of X such that fn (w) T f (w) a.e. we have -~ ~ 

Let X be a Banach lattice and let J be a finite subset of the set Q+ of
positive rational numbers. Given a locally-integrable function f : X (this
means, of course, that f is strongly measurable and that the R-valued function

is locally-integrable) we define
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where the sup is taken in the lattice X.
When X is a Kothe function space, as it will be the case in the sequel,

it is clear that f (x, t) is a function of w given by

where the sup is now taken with respect to the order of R.
In this situation we can consider f and as functions on R~ and

x Q respectively. If 1 &#x3E; 0 we have

and therefore for any Banach lattice X and any finite subset J of Q+, we have

where now the inequality holds with respect to the order of the lattice X. By
the above results about ’1’, we have that given a Banach lattice X, a Carleson
measure and -i &#x3E; 0, the inequality

holds with the constant C depending on dj.l and I but not on J.

1.6 DEFINITION. We shall say that a Banach lattice X satisfies the

Hardy-Littlewood (H.L.) property if the inequality

holds, with C independent of J (see [GC-M-T]); MJ is defined by

the sup being taken with respect to the lattice order

It is easy to check that for every for any finite subset J of Q+ we have
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therefore if X has the H.L. property, using Remark 1.1, we have for any
Carleson measure dit

On the other hand, choosing t) = dx 0 is clear that if for a
Banach lattice X we have the inequality

with C independent of J, then, Definition 1.6, X must have the H.L. property.
Now we collect the above results for further reference.

1.7 PROPOSITION.

( 1.8) Let E be an arbitrary Banach space and T,~, P be the E-valued extensions
defined in (1.3); then for any Carleson measure dj.l in we have

and

(1.9) Let X be an arbitrary Banach lattice and M1,J be the operator defined
in (1.5); then for any Carleson measure dj.l in 1 and any ~y &#x3E; 0 we

have

with C independent of J.

(I. 10) Let E be a Banach space and Qi be the vector-valued extension of Qi.
For any Carleson measure dti in 1 

we have

if and only if E is U.M.D.



553

( 1.11 ) Let X be a Banach lattice and .Mo, J be the operator defined in (1.5).
For any Carleson measure dj.l in 1 

we have

with C independent of J, if and only if X has the H.L. property.

2. - Technical lemmas

2.1 LEMMA. Assume that dit is a Carleson measure in Let I  p  oo,

B1 = lxl  1 } and let v be a non-negative measurable function in such

that  +oo a.e. in (x, t) and f v-PflPdx &#x3E; 0. Under these

Bi

conditions the weight w(x, t) = t)]-~° with # &#x3E; p - I satisfies

(2.2) For &#x3E; 0 and

(2.3) For &#x3E; 0 and

PROOF. If by Holder’s inequality, we have
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Then we need to consider only the case Let

1~ = 0, 1, 2, .... We define

as the operator N, maps into see Remark 1.1,
we have

On the other hand, for any r &#x3E; 0, Holder’s inequality gives

therefore, by the definition of Ek, we obtain

Applying Marcinkiewicz’s interpolation theorem to (2.4) and (2.5) we
obtain , ,

for

Replacing, in the last inequality, by f it follows that



555

The assumption that t)  +oo a.e. in (x, t) implies that
U Ek ) = 0; therefore:

On the other hand if (x, t) E B1 then

therefore, as v-p’jp &#x3E; 0, we have that w(x, t) is bounded for (x, t) E B1 n Eo.
Bi

Then, using (2.6) and (2.7), we get

since ,Q &#x3E; p - 1, the above geometric series is convergent and this completes
the proof of (2.2). 

’

In order to estimate we shall use the following inequality, see
[R-T], valid for - &#x3E; 0 small enough

where C depends on 6 and ~y. n

Let 6 &#x3E; 0,i = 1-6 and 12 = 1+6; if - is small enough we get 0  - .

1 1 E 1 1 - . 1 1 
p

Let q1 and q2 be such that 1 - 1 + - and 1 - - - - in articular 1 - 1 -" " 

ql q n q q n 
p 

ql p n

and 1 
1 2and 2013 = - - 2013.

q2 P n

By (2.2) we have
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Then applying (2.8) and Holder’s inequality with exponents 2q2 we obtain
p

Now we state the vector-valued version of Lemma 2.1.

2.9 LEMMA. Assume that is a Carleson measure in Rn++1. Let
I  p  oo and let v be a non-negative measurable function in Rn such

that  oo a.e. in (x,t) and &#x3E; 0. Under these

B,
conditions the weight w defined in Lemma 2.1 satisfies the following properties:

(2.10) For any function space X, any finite subset J of Q+, any 1 &#x3E; 0

with C,,p,q independent of J and X;

(2. 11) For any Banach space E, any ’Y &#x3E; 0 &#x3E; _ 1 - ~y
q p n

with C,,p,q independent of E.

PROOF. (2.11) is a direct conse-

quence of (2.3). On the other hand if X is a Banach space of classes of e°quiva-
lence of measurable functions on (Q, A, v) we have for any w and -1 &#x3E; 0
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and therefore, by definition (1.4), we have

now (2.10) follows from (2.11 ). D

The following Lemma can be found in [F-T], Theorem 1. We state if here
for further reference.

2.12 LEMMA. Let (Y, dv) be a measure space, F and G be Banach spaces and
00

lakl-o be a sequence of disjoint sets in Y such that U Ak = Y. Assume that
k=O

0  s  p  oo and that is a family of sublinear operators which satisfies

where, for each Ck is a constant depending on G, F, p and s. Then
there exists a positive function u(x) on Y such that

where C is a constant depending on G, F, p and s.

2.13 DEFINITION. Given 0  1  n and a finite subset L of Q+ f1 [1, oo)
we define the function x K2 as

where Bw is a ball centered at the origin with radius Tw E L.

2.14 DEFINITION. Let v be a weight in (i. e. a real-valued,
locally-integrable function with v(x) &#x3E; 0 a. e. in Let X be a Köthe function
space with X’ norming and 1  p  oo. We shall say that v belongs to the
class if the inequality

holds for any a E X’  I and with the constant C independent of

2.15 LEMMA. Assume 0  ~y  n. Let X be a K,5the function space with
X’ norming and let 1  p  oo. For a weight v in the following properties
are equivalent:
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(i) v c D;,x’
(ii) Given a ball B = B(0, R) - Ix I  RI, R &#x3E; 11 and a X-valued

locally- integrable function f with support in the complement of 2B =
B(O, 2R), inequality

holds with the constant C independent of J.

PROOF. (i) # (ii) Let f be a locally-integrable function with support in

RnBB(0,2R). Given (x, t) E 11 and a rational number r, the integral If (y)ldy
B(x,r)

is equal to zero unless in this case r &#x3E; R and then

B(x, r) c B(0,2r). Hence if J c Q+ we have

where

and for each w, rw = s E Lt if

In the last equality we have used the hypothesis that J is finite and the

consequence that for each (w, t) the sup is in fact a maximum.
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As X’ is norming, we have

Now we observe that for each y, the function W H w) is a step function
and therefore the function w H w) is an element of X’; therefore
by duality and Holder’s inequality, we have

(ii) # (i) Let B1 = Ix I  1} be the unit ball in R~. By duality we
have

where
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To estimate the first summand we observe that (0, t) E Bl and therefore
we have

On the other hand since 1 we have

This completes the proof. D

2.16 LEMMA. Let 0  ~y  n, E and F be Banach spaces and v be a

weight in I~n such that v E DJ (see 0.6). Assume that T’"t is an operator from
dx) into LF(~+ 1, such that

Then given a ball B = B(O, R), R &#x3E; 1, and a E-valued locally-integrable
function f with support in the complement of 2B, inequality

holds with C independent of Ti.

PROOF. It is sufficient to prove that
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If (x, t) E Ê, we have

3. - Main results

In this section we shall state and prove the main results of the paper. We
recall that in the Introduction (0.3 and 0.6) we have defined the classes D and
D’pl.P

3.1 THEOREM. Let E be a Banach space, dti be a Carleson measure in
1 and v be a weight in 

(3.2) If v ED;, I  p  oo, then there exists a weight u in 1 such that

(3.3) v belongs to with I  p  oo and 0  ~y  n, if and only if there
exists a weight u in Rn++1 1 such that

with and

3.4 COROLLARY. Let 0  1  n, E and F be Banach spaces, dli be a
Carleson measure in Rn++1 1 and v be a weight in such that v Assume

that 71 is a bounded sublinear operator from dx) into such
7 p f E F + 5

that
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Then there exists a weight u in 1 such that

with and

3.5 THEOREM. Let X be a Banach lattice, be a Carleson measure in
1 and v be a weight in then v belongs to (see 2.14) 0  1  n

and I  p  oo, if and only if there exists a weight u in Rn++1 1 such that

where the constant Gy is independent of the finite set J, I &#x3E; - - 2013 and
q p n

3.7 THEOREM. Let E be a Banach space with the U.M.D. be

a Carleson measure in R~’~ 1 and v be a weight in Then v belongs to Dp
with 1  p  oo, if and only if there exists u in 1 such that

3.9 THEOREM. Let X be a Banach lattice with the H.L. property, dj.l be
a Carleson measure in 1 and v be a weight in Then v belongs to Dp,x
(see 2.14) with 1  p  oo, if and only if there exists u in R7," 1 such that

where the constant C is independent of the set J.

PROOF OF 3.1. We first observe that for every (x, t) E Rn++1 1 we have

and

Therefore it is enough to prove the result for the special case E = R and f &#x3E; 0.
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In order to see that condition D* is sufficient we observe that, by Remark
1.1 there exists a weight u satisfying

and then (3.2) follows since

Now we shall show that condition DJ is sufficient in (3.3). We assume

first that! - ’1 &#x3E; 0. Without loss of generality we may assume that is
p n 

G. f.. hnot equal to zero a.e. on B(O, 1). Given a function f we write f = f, + f2, where
fl = fXB(0,2). To deal with f1, remark that

Therefore as Mo maps L1 (Rn, dx) into see [F-S], we have
that

and then we are in the hypothesis of Lemma 2.1. Therefore, if u is defined as

we get by (2.3)



564

In order to consider f2 we apply Lemma 2.16 and get

where for the last inequality we have used the hypotheses that u is a bounded
function and that j.L is a Carleson measure.

Suppose now  0. As before we write .f = II + where
p n

f1 l = /XB(0,2). 
p

To deal with f1 1 we first remark that there always exists 6 with 0  6  n,

such that - &#x3E; 1 - s &#x3E; 0. It turns out that 6  1; then Dy c D’ and hence we
g p n 

p p "

can apply the previous case obtaining a weight u supported in B1 = B(O, 1) and
satisfying

Then the desired estimate for T1f1 1 follows from inequality

The estimate for f2 is proved using the same method as in the previous case.
We finally show that condition DJ is necessary in (3.3).
Given (z, t) e jB(0,1) we have

Therefore, using the hypothesis, we have
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Now, if we take f (y) = g(y)v-’/P(y), we can conclude that

and this implies that

This concludes the proof of Theorem 3.1. D

I I 
PROOF OF 3.5. Assume that v e and suppose that - 2 - - - &#x3E; 0.

Given a function f, write f = f, + h where fl = f XB(0,2), and remark that

where = and = 1. Therefore, as in the proof’ IB(O, 1) 1--i/n
of (3.3), since Mo maps L’(R7,dx) into we have that

 +00 a.e. in (x,t) and then we are in the hypothesis
of Lemma 2.9. Therefore, if u is defined as

we get

In order to consider f2 we apply Lemma 2.15 and get
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for the last inequality we have used the hypotheses that u is a bounded function
and that p is a Carleson measure.

 0 we continue as in the corresponding proof of (3.3).
p n

In order to see that condition is necessary we shall prove that (3.6)
implies (ii) of 2.15. We first observe that if f is a X-valued locally-integrable
function with support in the complement of a ball 2B = B(O, 2R), then for any
(x, t), (z, t) E f3 = 8(0, R), we have

where the sets L and K are defined by

Then if u is the weight whose existence is given by the hypothesis we
have

PROOF OF 3.9. The necessity of condition Dp,x can be proved as in

Theorem 3.5. In order to see that condition Dp,x is sufficient, we shall apply
Lemma 2.12. We consider the following sequence of subsets of 

Given k &#x3E; 0 we decompose each function f as f’ + f ", where f’ = 
and Bk = Ixl  2~}.

Using Lemma 2.15 we have
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with the constant C independent of J. Thus

Therefore, the vector-valued inequality of the hypothesis of Lemma 2.12 for
the functions (fj") follows immediately with G = F = X and Ak = Sk.

On the other hand we use Cotlar’s inequality (see V.2.8 in [GC-R de F]),
and ( 1.11 ) to obtain for 0  s  1

for the last inequality we have used the fact that

with and llallx. = 1.wit CPL(X, W) = an a X’ = 1.

Now a direct application of Lemma 2.12 shows the existence of a function
u satisfying (3.10). D

PROOF OF 3.7. Sufficiency of condition Dp can be established as in
Theorem 3.7.
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For necessity, we remark that if t) = dx (&#x26; 60(t) then inequality (3.8)
becomes 

- -

and in this case it is known (see [GC-R de F], p. 561 for a proof) that v E Dp.
For a general Carleson measure ti the mentioned proof can be easily adapted.

0

3.11 REMARK. Given a Carleson measure in I1~+ 1 we define for
I  p  oo and 0  ~y  n the following classes of weights in 

Then we have the following result.

3.12 THEOREM. Let dj.l be a Carleson measure in Rn++1 1 and v be a weight
in 

(3.13) v belongs to with I  p  oo if and only if there exists a weight
u in such that for any Banach space E

where P* is the vector-valued extension of the positive operator

(3.14) v belongs to with I  p  oo and 0  -1  n if and only if there
exists a weight u in such that for any Banach E

(3.15) Let 0  ~y  n, E and F be Banach spaces and suppose that v E 
Assume that r; is a bounded sublinear operator from into
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dx) such that

Then there exists a weight u in such that

(3.16) Let E be a Banach space with the U.M.D. property. The weight v belongs
to with I  p  oo if and only if there exists u in such that

where Qi is the vector-valued extension of the operator

PROOF. Technical results analogous to Proposition 1.7 and Lemmas 2.1,
2.9 and 2.16 hold also for the operators P*, Qi , T~ and 7-~, and this theorem
is therefore established following the lines of the proofs of Theorems 3.1, 3.4
and 3.7. D

4. - Duality of the two-weight problem

Let (Y, and (Z, dv) be measure spaces, E and F be Banach spaces
and assume that T is a linear operator such that for some pair of exponents
(p, q), 1  p q  oo, T is bounded from into and there exists a

pair of weights (u, v) such that

Then can consider the traspose operator T* from into 

defined by 
-

If we know that T*g is a E*-valued function then we actually have that
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T* maps into and moreover the following inequality holds:

In this case we also have that the pair (u, v) satisfies (4.1 ) if and only if
the pair satisfies (4.2).

In other words finding necessary and sufficient conditions for a weigth
u to satisfy inequality (4.1 ) is equivalent to finding necessary and sufficient
conditions for a weight to satisfy (4.2).

4.3 DEFINITION. Let dj.l be a Carleson measure on We shall say that
a weight u in 1 satisfies condition with 1  p  oo and 0  1  n,

if and only if 
I /,~

4.4 THEOREM. Let E be a Banach space, dli be a Carleson measure in
and u be a weight in The following conditions are equivalent for

1  p  cxJ.°

(i) u l -~~ 

(ii) There exists a weight v in Rn such that

4.5 THEOREM. Let dj.l a be Carleson measure in 1 and u be a weight
in Assume 1  p  oo. The following conditions are equivalent:

(i) u E 

(ii) For any U.M.D. Banach space E there exists a weight v such that

(iii) For any Banach lattice X with the H.L. property there exists a weight v
such that

with the constant C independent of the finite set L.

4.6 THEOREM. Let dj.l be a Carleson measure in and u be a weight in

Assume 0   n, I &#x3E; I - -1 and 1   oo. The following conditions+ 1’ 
q p n 

q .f g
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are equivalent:

(i) u E 

(ii) For any Banach space E there exists a weight v such that

(iii) For any Banach lattice X there exist a weight v such that

with the constant C independent oJ rlm , finite set L.

PROOF OF 4.4, 4.5 AND 4.6. The results for the operators P, T.~ and Qi
follow directly using duality and (3.13), (3.14) and (3.16).

For the operator M¡,L we consider the £"(X)-valued linear operator

We have

where I - I denotes the absolute value in the lattice

and

Therefore statement (iii) is equivalent to the following:
There exists a weight v such that

But this fact can be obtained in a standard way using duality and Theorem 3.5.
This completes the proof of Theorems 4.4, 4.5 and 4.6. D
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5. - Properties of the classes D^l

5.1 PROPOSITION. Let X be a K5the function space with X’ norming and
I  p  oo. The following relations hold:

PROOF. (i) is obvious.
In order to show (ii) we remark that for every ball B = B(0, r) (with

r &#x3E; 1)

then if a E X’ and is a function of the type defined in 2.13 we have

Therefore  Cllallx. 
( 1 + 

which implies that D,-’ C ’ 

(I + P P, 
°

Now we shall see that C D;,I. Given a ball B(O, R) mth R &#x3E; 1 we
consider 

’

where L = {R} ; then for a E X’ with llallx. = 1, we have

Therefore

In case X = V with 1  r  oo we denote by DJ,r. For this case we
have the following result. 

’

5.2 COROLLARY. Assume 1  p  oo and 0 ~ 1  n. Then = DJ and
= ~~ 

PROOF. It is clear that v e DJ,r with 1  r  oo if and only if
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for any sequence (aj) E iT’  1 and any sequence of balls (BTJ)
centered at the origin with rational radii rj bigger than one.

If v E D~ using Minkowski’s inequality, we have

Therefore D;,1 C DJ,oo.
On the other hand v E if and only if

for any (aj)  I and any sequence of balls centered
at the origin with rational radii (rj) bigger than one.

Now if v E and if we denote by Bk the ball centered at the origin
with radius 2 k for k = 0,1, 2, ... then

Therefore
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