Skip to main content
Log in

Donaldson–Thomas theory of \([\mathbb {C}^2/\mathbb {Z}_{n+1}]\times \mathbb {P}^1\)

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We study the relative orbifold Donaldson–Thomas theory of \([\mathbb {C}^2/\mathbb {Z}_{n+1}]\times \mathbb {P}^1\). A correspondence is established between the DT theory relative to disjoint union of vertical fibers to quantum multiplication by divisors for the Hilbert scheme of points on \([\mathbb {C}^2/\mathbb {Z}_{n+1}]\). This determines a correspondence between the whole theories if a further nondegeneracy condition is assumed. The result can also be viewed as a crepant resolution correspondence to the DT theory of \(\mathcal {A}_n\times \mathbb {P}^1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramovich, D., Graber, T., Vistoli, A.: Gromov–Witten theory of Deligne–Mumford stacks. Am. J. Math. 130(5), 1337–1398 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Behrend, K., Fantechi, B.: The intrinsic normal cone. Invent. Math. 128(1), 45–88 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bryan, J., Cadman, C., Young, B.: The orbifold topological vertex. Adv. Math. 229(1), 531–595 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bryan, J., Graber, T.: The crepant resolution conjecture. In: Algebraic Geometry—Seattle 2005. Part 1, Volume 80 of Proceedings of Symposia in Pure Mathematics, pp. 23–42. American Mathematical Society, Providence (2009)

  5. Bryan, J., Pandharipande, R.: The local Gromov–Witten theory of curves. J. Am. Math. Soc. 21(1), 101–136 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, W., Ruan, Y.: A new cohomology theory of orbifold. Commun. Math. Phys. 248(1), 1–31 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kiem, Y.-H., Li, J.: Localizing virtual cycles by cosections. J. Am. Math. Soc. 26(4), 1025–1050 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kuznetsov, A.: Quiver varieties and Hilbert schemes. Mosc. Math. J. 7(4), 673–697 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Lehn, M.: Chern classes of tautological sheaves on Hilbert schemes of points on surfaces. Invent. Math. 136(1), 157–207 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Maulik, D., Nekrasov, N., Okounkov, A., Pandharipande, R.: Gromov–Witten theory and Donaldson–Thomas theory, I. Compos. Math. 142, 1263–1285 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Maulik, D., Nekrasov, N., Okounkov, A., Pandharipande., R.: Gromov–Witten theory and Donaldson–Thomas theory, II. Compos. Math. 142, 1286–1304 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Maulik, D., Oblomkov, A., Okounkov, A., Pandharipande, R.: Gromov–Witten/Donaldson–Thomas correspondence for toric 3-folds. Invent. Math. 186(2), 435–479 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Maulik, D., Okounkov, A.: Quantum Groups and Quantum Cohomology. arXiv:1211.1287 (2012)

  14. Maulik, D., Pandharipande, R., Thomas, R.P.: Curves on K3 surfaces and modular forms. J. Topol. 3(4), 937–996 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Maulik, D.: Gromov–Witten theory of \(\cal{A}_n\)-resolutions. Geom. Topol. 13, 1729–1773 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Maulik, D., Oblomkov, A.: Donaldson–Thomas theory of \({\cal{A}}_n\times {\mathbb{P}}^1\). Compos. Math. 145, 1249–1276 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Maulik, D., Oblomkov, A.: Quantum cohomology of the Hilbert scheme of points on \({\cal{A}}_n\)-resolutions. J. Am. Math. Soc. 22(4), 1055–1091 (2009)

    Article  MATH  Google Scholar 

  18. Nagao, K.: Quiver varieties and Frenkel–Kac construction. J. Algebra 321(12), 3764–3789 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nakajima, H.: Jack polynomials and Hilbert schemes of points on surfaces. In eprint arXiv:alg-geom/9610021 (1996)

  20. Nakajima, H.: Instantons on ALE spaces, quiver varieties, and Kac–Moody algebras. Duke Math. J. 76(2), 365–416 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nakajima, H.: Quiver varieties and Kac–Moody algebras. Duke Math. J. 91(3), 515–560 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Okounkov, A., Pandharipande, R.: Quantum cohomology of the Hilbert scheme of points in the plane. Invent. Math. 179(3), 523–557 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Okounkov, A., Pandharipande, R.: The local Donaldson–Thomas theory of curves. Geom. Topol. 14, 1503–1567 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ross, D.: Donaldson–Thomas theory and resolutions of toric transverse A-singularities. arXiv:1409.7011 (2014)

  25. Ruan, Y.: The cohomology ring of crepant resolutions of orbifolds. In: Jarvis TJ, Kimura T, Vaintrob A (eds) Gromov–Witten Theory of Spin Curves and Orbifolds. Volume 403 of Contemporary Mathematics, pp. 117–126. American Mathematical Society, Providence (2006)

  26. Toën, B.: Théorèmes de Riemann–Roch pour les champs de Deligne–Mumford. K-theory 18(1), 33–76 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Young, B., Bryan, J.: Generating functions for colored 3D Young diagrams and the Donaldson–Thomas invariants of orbifolds. Duke Math. J. 152(1), 115–153 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhou, Z.: Relative orbifold Donaldson–Thomas theory and the degeneration formula. arXiv:1504.02303 (2015)

Download references

Acknowledgements

The author would like to thank Davesh Maulik, Hiraku Nakajima, Andrei Okounkov, Amdrey Smirnov, Changjian Su, Richard Thomas and Jingyu Zhao for helpful discussions and suggestions. Moreover, the author would like to express his acknowledgements to Professor Chiu–Chu Melissa Liu, for useful conversations and suggestions. The project would not have been possible without her guidance and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zijun Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z. Donaldson–Thomas theory of \([\mathbb {C}^2/\mathbb {Z}_{n+1}]\times \mathbb {P}^1\). Sel. Math. New Ser. 24, 3663–3722 (2018). https://doi.org/10.1007/s00029-017-0384-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-017-0384-9

Mathematics Subject Classification

Navigation