Skip to main content
Log in

Grothendieck ring of varieties, D- and L-equivalence, and families of quadrics

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We discuss a conjecture saying that derived equivalence of smooth projective simply connected varieties implies that the difference of their classes in the Grothendieck ring of varieties is annihilated by a power of the affine line class. We support the conjecture with a number of known examples, and one new example. We consider a smooth complete intersection X of three quadrics in \({\mathbb {P}}^5\) and the corresponding double cover \(Y \rightarrow {\mathbb {P}}^2\) branched over a sextic curve. We show that as soon as the natural Brauer class on Y vanishes, so that X and Y are derived equivalent, the difference \([X] - [Y]\) is annihilated by the affine line class.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auel, A., Bernardara, M., Bolognesi, M.: Fibrations in complete intersections of quadrics, Clifford algebras, derived categories, and rationality problems. J. Math. Pures Appl. (9) 102(1), 249–291 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bondal, A.I., Larsen, M., Lunts, V.A.: Grothendieck ring of pretriangulated categories. Int. Math. Res. Not. 29, 1461–1495 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bondal, A., Orlov, D.: Semiorthogonal decomposition for algebraic varieties. arXiv:alg-geom/9506012

  4. Bondal, A., Orlov, D.: Reconstruction of a variety from the derived category and groups of autoequivalences. Compos. Math. 125(3), 327–344 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borisov, L.: Class of the affine line is a zero divisor in the Grothendieck ring. arXiv:1412.6194

  6. Borisov, L., Căldăraru, A.: The Pfaffian-Grassmannian derived equivalence. J. Algebr. Geom. 18(2), 201–222 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Galkin, S., Shinder, E.: The Fano variety of lines and rationality problem for a cubic hypersurface. arXiv:1405.5154

  8. Hassett, B., Lai, K.-W.: Cremona transformations and derived equivalences of K3 surfaces arXiv:1612.07751

  9. Ito, A., Miura, M, Okawa, S., Ueda, K.: The class of the affine line is a zero divisor in the Grothendieck ring: via G2-Grassmannians arXiv:1606.04210

  10. Ito, A., Miura, M., Okawa, S., Ueda, K.: The class of the affine line is a zero divisor in the Grothendieck ring: via K3 surfaces of degree 12, arXiv:1612.08497

  11. Kawamata, Yu.: \(D\)-equivalence and \(K\)-equivalence. J. Differ. Geom. 61(1), 147–171 (2002)

    Article  MATH  Google Scholar 

  12. Kollár, J.: Conics in the Grothendieck ring. Adv. Math. 198(1), 27–35 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kontsevich, M.: Motivic integration. Lecture at Orsay (1995)

  14. Kollár, J., Miyaoka, Y., Mori, S.: Rationally connected varieties. J. Algebr. Geom. 1(3), 429–448 (1992)

    MathSciNet  MATH  Google Scholar 

  15. Kuznetsov, A.: Homological projective duality for Grassmannians of lines. arXiv:math/0610957

  16. Kuznetsov, A.: Homological projective duality. Publ. Math. Inst. Hautes Études Sci. 105, 157–220 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kuznetsov, A.: Derived categories of quadric fibrations and intersections of quadrics. Adv. Math. 218(5), 1340–1369 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kuznetsov, A.: Derived categories of cubic fourfolds. In: Bogomolov, F., Tschinkel, Y. (eds.) Cohomological and Geometric Approaches to Rationality Problems. Progr. Math., vol. 282, pp. 219–243. Birkhuser Boston Inc., Boston (2010)

    Chapter  Google Scholar 

  19. Kuznetsov, A.: Semiorthogonal decompositions in algebraic geometry. In: Proceedings of the International Congress of Mathematicians, vol. II, pp. 635–660, Seoul (2014)

  20. Kuznetsov, A.: Küchle fivefolds of type \(c5\). Math. Z. 284(3–4), 1245–1278 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kuznetsov, A.: Derived equivalence of Ito–Miura–Okawa–Ueda Calabi–Yau 3-folds. J. Math. Soc. Jpn. arXiv:1611.08386

  22. Larsen, M., Lunts, V.: Motivic measures and stable birational geometry. Mosc. Math. J. 3(1), 85–95 (2003)

    MathSciNet  MATH  Google Scholar 

  23. Liu, Q., Sebag, J.: The Grothendieck ring of varieties and piecewise isomorphisms. Math. Z. 265, 321–342 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Madonna, K., Nikulin, V.V.: On the classical correspondence between K3 surfaces Tr. Mat. Inst. Steklova 241 (2003), Teor. Chisel, Algebra i Algebr. Geom. 132–168; translation in Proc. Steklov Inst. Math. 2(241), 120–153 (2003)

  25. Martin, N.: The class of the affine line is a zero divisor in the Grothendieck ring: an improvement. C. R. Math. Acad. Sci. Paris 354(9), 936–939 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Orlov, D.: Derived categories of coherent sheaves, and motives, Uspekhi Mat. Nauk 60 (2005), 6(366), 231–232; translation. Russ. Math. Surv. 60(6), 1242–1244 (2005)

  27. Panin, I.: Rationally isotropic quadratic spaces are locally isotropic. Invent. Math. 176(2), 397–403 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rost, M.: The motive of a Pfister form, http://www.mathematik.uni-bielefeld.de/~rost/motive.html

  29. Uehara, H.: An example of Fourier–Mukai partners of minimal elliptic surfaces. Math. Res. Lett. 11, 371–375 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeny Shinder.

Additional information

A.K. was partially supported by the Russian Academic Excellence Project 5-100, by RFBR Grants 15-01-02164 and 15-51-50045, and by the Simons foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, A., Shinder, E. Grothendieck ring of varieties, D- and L-equivalence, and families of quadrics. Sel. Math. New Ser. 24, 3475–3500 (2018). https://doi.org/10.1007/s00029-017-0344-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-017-0344-4

Mathematics Subject Classification

Navigation