Skip to main content
Log in

Transition formulas for involution Schubert polynomials

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

The orbits of the orthogonal and symplectic groups on the flag variety are in bijection, respectively, with the involutions and fixed-point-free involutions in the symmetric group \(S_n\). Wyser and Yong have described polynomial representatives for the cohomology classes of the closures of these orbits, which we denote as \({\hat{\mathfrak S}}_y\) (to be called involution Schubert polynomials) and \(\hat{\mathfrak S}^\mathtt{{FPF}}_y\) (to be called fixed-point-free involution Schubert polynomials). Our main results are explicit formulas decomposing the product of \({\hat{\mathfrak S}}_y\) (respectively, \(\hat{\mathfrak S}^\mathtt{{FPF}}_y\)) with any y-invariant linear polynomial as a linear combination of other involution Schubert polynomials. These identities serve as analogues of Lascoux and Schützenberger’s transition formula for Schubert polynomials, and lead to a self-contained algebraic proof of the nontrivial equivalence of several definitions of \({\hat{\mathfrak S}}_y\) and \( \hat{\mathfrak S}^\mathtt{{FPF}}_y\) appearing in the literature. Our formulas also imply combinatorial identities about involution words, certain variations of reduced words for involutions in \(S_n\). We construct operators on involution words based on the Little map to prove these identities bijectively. The proofs of our main theorems depend on some new technical results, extending work of Incitti, about covering relations in the Bruhat order of \(S_n\) restricted to involutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abe, H., Billey, S.: Consequences of the Lakshmibai–Sandhya theorem: the ubiquity of permutation patterns in Schubert calculus and related geometry. Adv. Stud. Pure Math. 71, 1–52 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Bergeron, N., Billey, S.: RC-graphs and Schubert polynomials. Exp. Math. 2, 257–269 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bertiger, A.: The orbits of the symplectic group on the flag manifold. Preprint, arXiv:1411.2302 (2014)

  4. Braden, T., Billey, S.: Lower bounds for Kazhdan–Lusztig polynomials from patterns. Transform. Groups 8(4), 321–332 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Billey, S., Haiman, M.: Schubert polynomials for the classical groups. J. AMS 8, 443–482 (1995)

    MathSciNet  MATH  Google Scholar 

  6. Billey, S.C., Jockusch, W., Stanley, R.P.: Some combinatorial properties of Schubert polynomials. J. Algebraic Comb. 2, 345–374 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brion, M.: The behaviour at infinity of the Bruhat decomposition. Comment. Math. Helv. 73(1), 137–174 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Can, M.B., Joyce, M., Wyser, B.: Chains in weak order posets associated to involutions. J. Comb. Theory Ser. A 137, 207–225 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Can, M. B., Joyce, M., Wyser, B.: Wonderful symmetric varieties and schubert polynomials. Preprint arXiv:1509.03292 (2015)

  10. Hamaker, Z., Marberg, E., Pawlowski, B.: Involution words: counting problems and connections to Schubert calculus for symmetric orbit closures. Preprint arXiv:1508.01823 (2015)

  11. Hamaker, Z., Marberg, E., Pawlowski, B.: Involution words II: braid relations and atomic structures. J. Algebraic Comb. 45, 701–743 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hamaker, Z., Marberg, E., Pawlowski, B.: Schur \(P\)-positivity and involution Stanley symmetric functions. In: IMRN, rnx274 (2017)

  13. Hamaker, Z., Marberg, E., Pawlowski, B.: Fixed-point-free involutions and Schur \(P\)-positivity. Preprint arXiv:1706.06665 (2017)

  14. Hu, J., Zhang, J.: On involutions in symmetric groups and a conjecture of Lusztig. Adv. Math. 287, 1–30 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hultman, A.: Fixed points of involutive automorphisms of the Bruhat order. Adv. Math. 195, 283–296 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hultman, A.: The combinatorics of twisted involutions in Coxeter groups. Trans. Am. Math. Soc. 359, 2787–2798 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hultman, A.: Twisted identities in Coxeter groups. J. Algebraic Comb. 28, 313–332 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hultman, A., Vorwerk, K.: Pattern avoidance and Boolean elements in the Bruhat order on involutions. J. Algebraic Comb. 30, 87–102 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Humphreys, J.E.: Reflection Groups and Coxeter Groups. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  20. Incitti, F.: The Bruhat Order on the Involutions of the Symmetric Group. J. Algebraic Comb. 20, 243–261 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Knutson, A.: Schubert polynomials and symmetric functions, notes for the Lisbon Combinatorics Summer School. http://www.math.cornell.edu/allenk/ (2012)

  22. Knutson, A., Miller, E.: Subword complexes in Coxeter groups. Adv. Math. 184(1), 161–176 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lam, T., Shimozono, M.: A Little bijection for affine Stanley symmetric functions. Seminaire Lotharingien de Combinatoire 54A, B54Ai (2006)

    MathSciNet  MATH  Google Scholar 

  24. Lascoux, A., Schützenberger, M.-P.: Schubert polynomials and the Littlewood–Richardson rule. Lett. Math. Phys. 10(2), 111–124 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  25. Little, D.P.: Combinatorial aspects of the Lascoux–Schützenberger tree. Adv. Math. 174(2), 236–253 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Macdonald, I.G.: Notes on Schubert Polynomials, Laboratoire de combinatoire et d’informatique mathématique (LACIM). Universite du Québec a Montréal, Montreal (1991)

    Google Scholar 

  27. Manivel, L.: Symmetric Functions, Schubert Polynomials, and Degeneracy Loci. American Mathematical Society, Providence (2001)

    MATH  Google Scholar 

  28. Monk, D.: The geometry of flag manifolds. Proc. Lond. Math. Soc. 9, 253–286 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rains, E.M., Vazirani, M.J.: Deformations of permutation representations of Coxeter groups. J. Algebraic Comb. 37, 455–502 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Richardson, R.W., Springer, T.A.: The Bruhat order on symmetric varieties. Geom. Dedicata 35, 389–436 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  31. Richardson, R.W., Springer, T.A.: Complements to: The Bruhat order on symmetric varieties. Geom. Dedicata 49, 231–238 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wyser, B.J., Yong, A.: Polynomials for symmetric orbit closures in the flag variety. Transform. Groups 22, 267–290 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wyser, B.J., Yong, A.: Polynomials for \(\text{ GL }_p\times \text{ GL }_q\) orbit closures in the flag variety. Sel. Math. 20(4), 1083–1110 (2014)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We thank Dan Bump, Michael Joyce, Vic Reiner, Alex Woo, Ben Wyser, and Alex Yong for many helpful conversations during the development of this paper. We also thank the anonymous referees for their useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Marberg.

Additional information

Zachary Hamaker was supported by the IMA with funds provided by the National Science Foundation. Eric Marberg was supported through a fellowship from the National Science Foundation. Brendan Pawlowski was partially supported by NSF Grant 1148634.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamaker, Z., Marberg, E. & Pawlowski, B. Transition formulas for involution Schubert polynomials. Sel. Math. New Ser. 24, 2991–3025 (2018). https://doi.org/10.1007/s00029-018-0423-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-018-0423-1

Mathematics Subject Classification

Navigation