Skip to main content
Log in

Relative enumerative invariants of real nodal del Pezzo surfaces

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Les éléphants ne sont pas autorisés à traverser la rivière, ils doivent rester dans leur moitié de plateau.

- Règles des Echecs Chinois

Abstract

The surfaces considered are real, rational and have a unique smooth real \((-2)\)-curve. Their canonical class K is strictly negative on any other irreducible curve in the surface and \(K^2>0\). For surfaces satisfying these assumptions, we suggest a certain signed count of real rational curves that belong to a given divisor class and are simply tangent to the \((-2)\)-curve at each intersection point. We prove that this count provides a number which depends neither on the point constraints nor on deformation of the surface preserving the real structure and the \((-2)\)-curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brugallé, E.: Surgery of real Symplectic Fourfolds and Welschinger Invariants. Preprint at arXiv:1601.05708

  2. Brugallé, E., Puignau, N.: On Welschinger invariants of symplectic 4-manifolds. Comment. Math. Helv. 90(4), 905–938 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Caporaso, L., Harris, J.: Counting plane curves of any genus. Invent. Math. 131(2), 345–392 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Deligne, P.: Equations différentielles et points singuliers réguliers. Lecture Notes in Mathematics, Vol. 163. Springer, Berlin (1970)

  5. Demazure, M.: Surfaces de Del Pezzo : III—Positions presque générales. Séminaire sur les singularités des surfaces (1976–1977), Exposé No. 5

  6. Diaz, S., Harris, J.: Ideals associated to deformations of singular plane curves. Trans. Am. Math. Soc. 309(2), 433–468 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dolgachev, I.V.: Classical Algebraic Geometry: A Modern View. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  8. Fulton, W., Pandharipande, R.: Notes on stable maps and quantum cohomology. Algebraic Geometry—Santa Cruz 1995, Proceedings of Symposia in Pure Mathematics, Vol. 62, Part 2, American Mathematical Society, Providence, RI, pp. 45–96 (1997)

  9. Gudkov, D.A., Shustin, E.I.: On the intersection of the close algebraic curves. In: Dold, A., Eckmann, B. (eds.) Topology (Leningrad, 1982), Lecture Notes in Mathematics, Vol. 1060, pp. 278–289. Springer (1984)

  10. Horikawa, E.: On deformations of holomorphic maps, III. Math. Ann. 222, 275–282 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  11. Itenberg, I., Kharlamov, V., Shustin, E.: Welschinger invariants of real del Pezzo surfaces of degree \(\ge 3\). Math. Ann. 355(3), 849–878 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Itenberg, I., Kharlamov, V., Shustin, E.: Welschinger invariants of real del Pezzo surfaces of degree \(\ge 2\). Int. J. Math. 26(6), 1550060 (2015). https://doi.org/10.1142/S0129167X15500603

    Article  MathSciNet  MATH  Google Scholar 

  13. Itenberg, I., Kharlamov, V., Shustin, E.: Welschinger invariants revisited. Analysis Meets Geometry: A Tribute to Mikael Passare. Trends in Mathematics, Birkhäuser, pp. 239–260 (2017)

  14. Kas, A., Schlessinger, M.: On the versal deformation of a complex space with an isolated singularity. Math. Ann. 196, 23–29 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kollar, J.: Rational Curves on Algebraic Varieties. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  16. Sakai, F.: Anticanonical models of rational surfaces. Math. Ann. 269(3), 389–410 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sernesi, E.: Deformations of Algebraic Schemes. Springer, Berlin (2006)

    MATH  Google Scholar 

  18. Scherback, I., Szpirglas, A.: Boundary singularities: double coverings and Picard–Lefschetz formulas. C. R. Acad. Sci. Paris Sr. I Math. 322(6), 557–562 (1996)

    MathSciNet  MATH  Google Scholar 

  19. Shoval, M., Shustin, E.: On Gromov–Witten invariants of del Pezzo surfaces. Int. J. Math. 24(7), 44 (2013). https://doi.org/10.1142/S0129167X13500547

    Article  MathSciNet  MATH  Google Scholar 

  20. Shustin, E.: A tropical approach to enumerative geometry. Algebra i Analiz17(2), 170–214 (2005) (English translation: St. Petersburg Math. J. 17, 343–375 (2006))

  21. Vakil, R.: Counting curves on rational surfaces. Manuscr. Math. 102, 53–84 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Viehweg, E.: Vanishing theorems. J. Reine Angew. Math. 335, 1–8 (1982)

    MathSciNet  MATH  Google Scholar 

  23. Welschinger, J.-Y.: Invariants of real symplectic 4-manifolds and lower bounds in real enumerative geometry. Invent. Math. 162(1), 195–234 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Welschinger, J.-Y.: Towards relative invariants of real symplectic four-manifolds. Geom. Asp. Funct. Anal. 16(5), 1157–1182 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenii Shustin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Itenberg, I., Kharlamov, V. & Shustin, E. Relative enumerative invariants of real nodal del Pezzo surfaces. Sel. Math. New Ser. 24, 2927–2990 (2018). https://doi.org/10.1007/s00029-018-0418-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-018-0418-y

Mathematics Subject Classification

Navigation