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A NOTE ON INTEGRAL C-PARALLEL

SUBMANIFOLDS IN S7(c)

D. FETCU AND C. ONICIUC

Abstract. We find the explicit parametric equations of the flat 3-dimensional
integral C-parallel submanifolds in the sphere S7 endowed with the deformed
Sasakian structure defined by Tanno.

1. Introduction

During the last three decades, in the geometry of Sasakian space forms, a special
attention was paid to the study of integral submanifolds, and several classification
results were obtained (see, for example, [1]-[4], [6]-[9]). These results were often
illustrated by explicit examples obtained using the odd dimensional unit Euclidean
spheres endowed with the canonical Sasakian structure S2n+1(1), as the models of
Sasakian space forms with constant ϕ-sectional curvature c = 1.

The study of integral submanifolds of Sasakian space forms have also been made
under some natural supplementary conditions. These conditions were formulated
in terms of the mean curvature vector field H or the second fundamental form B.
The most studied were the minimal, i.e. H = 0, integral submanifolds (see, for
example, [5, 8]), and then the submanifolds with H or B being C-parallel, which
means that the covariant derivative of H or B, in the normal bundle, is parallel to
the characteristic vector field (see [1, 4]).

Because of its peculiarities, the 7-sphere S7(1) played an important role in most
of the studies dedicated to integral submanifolds (see, for example, [3, 6, 9]).

In [4], the authors completely classified 3-dimensional integral C-parallel sub-
manifolds of 7-dimensional Sasakian space forms, i.e. those integral submanifolds
with C-parallel second fundamental form, and then they gave explicitly the flat
integral C-parallel submanifolds in S7(1).

The purpose of our paper is to go further and to obtain the explicit paramet-
ric equations of the flat integral C-parallel submanifolds in S7 endowed with the
deformed Sasakian structure introduced by Tanno, S7(c), seen as the model of the
Sasakian space form with constant ϕ-sectional curvature c > −3 (see [10]).
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2. Preliminaries

A triple (ϕ, ξ, η) is called a contact structure on a manifold N2n+1, where ϕ is
a tensor field of type (1, 1) on N , ξ is a vector field and η is a 1-form, if

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1.

A Riemannian metric g onN is said to be an associated metric, and then (N,ϕ, ξ, η,

g) is a contact metric manifold, if

g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ), g(X,ϕY ) = dη(X,Y ), ∀X,Y ∈ C∞(TN).

A contact metric structure (ϕ, ξ, η, g) is called normal if

Nϕ + 2dη ⊗ ξ = 0,

where

Nϕ(X,Y ) = [ϕX,ϕY ]− ϕ[ϕX, Y ]− ϕ[X,ϕY ] + ϕ2[X,Y ], ∀X,Y ∈ C∞(TN),

is the Nijenhuis tensor field of ϕ.
A contact metric manifold (N,ϕ, ξ, η, g) is a Sasakian manifold if it is normal or,
equivalently, if

(∇Xϕ)(Y ) = g(X,Y )ξ − η(Y )X, ∀X,Y ∈ C∞(TN)

(see [5]). We note that on a Sasakian manifold we have ∇Xξ = −ϕX .
Let (N,ϕ, ξ, η, g) be a Sasakian manifold. The sectional curvature of a 2-plane

generated by X and ϕX , where X is a unit vector orthogonal to ξ, is called
ϕ-sectional curvature determined by X . A Sasakian manifold with constant ϕ-
sectional curvature c is called a Sasakian space form and it is denoted by N(c).
The curvature tensor field of a Sasakian space form N(c) is given by

R(X,Y )Z = c+3
4 {g(Z, Y )X − g(Z,X)Y }+ c−1

4 {η(Z)η(X)Y

− η(Z)η(Y )X + g(Z,X)η(Y )ξ − g(Z, Y )η(X)ξ

+ g(Z,ϕY )ϕX − g(Z,ϕX)ϕY + 2g(X,ϕY )ϕZ}.
The classification of the complete, simply connected Sasakian space forms N(c)
was given in [10]. Thus, if c = 1 then N(1) is isometric to the unit sphere S2n+1

endowed with its canonical Sasakian structure, and if c > −3 then N(c) is isometric
to S2n+1 endowed with the deformed Sasakian structure given by Tanno, which we
present below.

Let S2n+1 = {z ∈ Cn+1 : |z| = 1} be the unit 2n+1-dimensional sphere endowed
with its standard metric field g0. Consider the following structure tensor fields on
S2n+1: ξ0 = −Iz for each z ∈ S2n+1, where I is the usual complex structure on
Cn+1 defined by

Iz = (−y1, . . . ,−yn+1, x1, . . . , xn+1),

for z = (z1, . . . , zn+1) = (x1, . . . , xn+1, y1, . . . , yn+1), zk = xk+iyk, and ϕ0 = s◦I,
where s : TzC

n+1 → TzS
2n+1 denotes the orthogonal projection. Equipped with

these tensors, S2n+1 becomes a Sasakian space form with ϕ0-sectional curvature
equal to 1, which is denoted by S2n+1(1).
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Now, consider the deformed Sasakian structure on S2n+1,

η = aη0, ξ =
1

a
ξ0, ϕ = ϕ0, g = ag0 + a(a− 1)η0 ⊗ η0,

where a is a positive constant. The structure (ϕ, ξ, η, g) is still a Sasakian structure
and (S2n+1, ϕ, ξ, η, g) is a Sasakian space form with constant ϕ-sectional curvature
c = 4

a
− 3 > −3 denoted by S2n+1(c) (see also [5]).

A submanifold Mm of a Sasakian manifold (N2n+1, ϕ, ξ, η, g) is called an integral

submanifold if η(X) = 0 for any vector field X tangent to M . We have ϕ(TM) ⊂
NM and m ≤ n, where TM and NM are the tangent bundle and the normal
bundle of M , respectively. Moreover, for m = n, one gets ϕ(NM) = TM . If
we denote by B the second fundamental form of M then, by a straightforward
computation, one obtains the following relation which we shall use later in this
paper

g(B(X,Y ), ϕZ) = g(B(X,Z), ϕY ),

for any vector fields X,Y and Z tangent to M (see also [4, 8]).
If Mm, with m ≤ n, is a submanifold of the sphere S2n+1 then M is integral

with respect to its canonical Sasakian structure (ϕ0, ξ0, η0, g0) if and only if it is
integral with respect to the deformed one (ϕ, ξ, η, g), since η0(X) = 0 if and only
if η(X) = 0 for any vector field X tangent to M . Moreover, if M is an integral
submanifold of S2n+1 then the normal bundle ofM in (S2n+1, g0) coincides with the
normal bundle of M in (S2n+1, g), since for any X ∈ TpM and Y ∈ TpS

2n+1, where
p is an arbitrary point in M , we have g0(X,Y ) = 0 if and only if g(X,Y ) = 0.

Next, we consider M to be an integral submanifold of S2n+1, and denote by gM0
and gM the induced metrics on M by g0 and g, respectively. Denote by ∇̇M and
∇M their Levi-Civita connections. Then the identity map 1 : (M, gM0 ) → (M, gM )

is an homothety and therefore ∇̇M = ∇M .
The following Lemma holds.

Lemma 2.1. Let M be an integral submanifold of S2n+1. If X and Y are vector

fields tangent to M then

∇̇XY = ∇XY and ∇̇XϕY = ∇XϕY,

where ∇̇ and ∇ are the Levi-Civita connections on (S2n+1, g0) and (S2n+1, g), re-
spectively.

Proof. From the definition of the metric g we have, for any vector fields X , Y
tangent to M and Z tangent to S2n+1,

g(∇XY, Z) = ag0(∇XY, Z) + a(a− 1)η0(∇XY )η0(Z).

But, since M is integral,

η0(∇XY ) =
1

a
η(∇XY ) =

1

a
g(∇XY, ξ) = −1

a
g(Y,∇Xξ) =

1

a
g(Y, ϕX) = 0,

and so

g(∇XY, Z) = ag0(∇XY, Z).
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On the other hand, applying the characterization of the Levi-Civita connection for
∇ and ∇̇, we obtain

g(∇XY, Z) = ag0(∇̇XY, Z).

From the last two relations we get

g0(∇XY, Z) = g0(∇̇XY, Z)

and therefore ∇̇XY = ∇XY for any vector fields X and Y tangent to M .
For the second relation, we use (∇Xϕ)Y = g(X,Y )ξ − η(Y )X and (∇̇Xϕ)Y =

g0(X,Y )ξ0 − η0(Y )X for vector fields X and Y tangent to M , and come to the
conclusion. �

We shall end this section by recalling the notion of an integral C-parallel sub-
manifold of a Sasakian manifold (see, for example, [4]). Let Mm be an integral
submanifold of a Sasakian manifold (N2n+1, ϕ, ξ, η, g). Then M is said to be in-

tegral C-parallel if ∇⊥B is parallel to the characteristic vector field ξ, where B is
the second fundamental form of M and ∇⊥B is given by

(∇⊥B)(X,Y, Z) = ∇⊥
XB(Y, Z)− B(∇XY, Z)−B(Y,∇XZ)

for any vector fields X,Y, Z tangent to M , ∇⊥ and ∇ being the normal connection
and the Levi-Civita connection on M , respectively. This means (∇⊥B)(X,Y, Z) =
g(ϕX,B(Y, Z))ξ. If we denote S(X,Y, Z) = g(ϕX,B(Y, Z)), then S is a totally
symmetric tensor field of type (0, 3) on M .

It is easy to see that, if the dimension of an integral C-parallel submanifold M

is maximal, i.e. it is equal to n, then the mean curvature |H | of M is constant.

3. Main result

In [4] Baikoussis, Blair and Koufogiorgios classified the 3-dimensional integral
C-parallel submanifolds in a Sasakian space form (N7(c), ϕ, ξ, η, g). In order to
obtain the classification, they worked with a special local orthonormal basis (see
also [6]). Here we shall briefly recall how this basis is constructed.

Let i : M3 → N7(c) be an integral submanifold of constant mean curvature. Let
p be an arbitrary point of M , and consider the function fp : UpM → R given by

fp(u) = g(B(u, u), ϕu),

where UpM = {u ∈ TpM : g(u, u) = 1} is the unit sphere in the tangent space TpM .
If fp(u) = 0, for all u ∈ UpM , then, for any v1, v2 ∈ UpM such that g(v1, v2) = 0
we have that

g(B(v1, v1), ϕv1) = 0 and g(B(v1, v1), ϕv2) = 0.

We obtain B(v1, v1) = 0, and then it follows that B vanishes at the point p.
Next, assume that the function fp does not vanish identically. Since UpM is

compact, fp attains an absolute maximum at a unit vector X1. It follows that
{
g(B(X1, X1), ϕX1) > 0, g(B(X1, X1), ϕX1) ≥ |g(B(w,w), ϕw)|
g(B(X1, X1), ϕw) = 0, g(B(X1, X1), ϕX1) ≥ 2g(B(w,w), ϕX1),
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where w is a unit vector tangent to M at p and orthogonal to X1. It is easy to see
that X1 is an eigenvector of the shape operator A1 = AϕX1

with the corresponding
eigenvalue λ1. Then, since A1 is symmetric, we consider X2 and X3 to be unit
eigenvectors of A1, orthogonal to each other and to X1, with the corresponding
eigenvalues λ2 and λ3. Further, we distinguish two cases.

If λ2 6= λ3, we can choose X2 and X3 such that
{
g(B(X2, X2), ϕX2) ≥ 0, g(B(X3, X3), ϕX3) ≥ 0

g(B(X2, X2), ϕX2) ≥ g(B(X3, X3), ϕX3).

If λ2 = λ3, we consider f1,p the restriction of fp to {w ∈ UpM : g(w,X1) = 0},
and we have two subcases:

(1) the function f1,p is identically zero. In this case, we have
{
g(B(X2, X2), ϕX2) = 0, g(B(X2, X2), ϕX3) = 0

g(B(X2, X3), ϕX3) = 0, g(B(X3, X3), ϕX3) = 0.

(2) the function f1,p does not vanish identically. Then we choose X2 such that
f1,p(X2) is an absolute maximum. We have that

{
g(B(X2, X2), ϕX2) > 0, g(B(X2, X2), ϕX2) ≥ g(B(X3, X3), ϕX3) ≥ 0

g(B(X2, X2), ϕX3) = 0, g(B(X2, X2), ϕX2) ≥ 2g(B(X3, X3), ϕX2).

Now, with respect to the orthonormal basis {X1, X2, X3}, the shape operators A1,
A2 = AϕX2

and A3 = AϕX3
, at p, can be written as follows

A1 =




λ1 0 0
0 λ2 0
0 0 λ3



 , A2 =




0 λ2 0
λ2 α β

0 β γ



 , A3 =




0 0 λ3

0 β γ

λ3 γ δ



 .

(3.1)
We also have A0 = Aξ = 0. With these notations we have

λ1 > 0, λ1 ≥ |α|, λ1 ≥ |δ|, λ1 ≥ 2λ2, λ1 ≥ 2λ3. (3.2)

For λ2 6= λ3 we get

α ≥ 0, δ ≥ 0 and α ≥ δ (3.3)

and for λ2 = λ3 we obtain that

α = β = γ = δ = 0 (3.4)

or

α > 0, δ ≥ 0, α ≥ δ, β = 0 and α ≥ 2γ. (3.5)

We can extend X1 on a neighbourhood Vp of p such that X1(q) is a maximal
point of fq : UqM → R, for any point q of Vp.

If the eigenvalues ofA1 have constant multiplicities, then the above basis {X1, X2,

X3}, defined at p, can be smoothly extended and we can work on the open dense
subset of M defined by this property.

Using this basis, in [4], the authors proved that, when M is an integral C-
parallel submanifold, the functions λi, i = 1, 3, and α, β, γ, δ are constant on
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Vp, and then classified all 3-dimensional integral C-parallel submanifolds in a 7-
dimensional Sasakian space form.

According to that classification, if c > −3 then M is an integral C-parallel
submanifold if and only if either:
Case I. M is totally geodesic, with the Gaussian curvature K = c+3

4 .
Case II. M is flat, locally it is a product of three curves, which are helices of

osculating orders r ≤ 4, and λ1 =
λ2− c+3

4

λ
6= 0, λ2 = λ3 = λ = constant 6= 0,

α = constant, β = 0, γ = constant, δ = constant, such that −
√
c+3
2 < λ < 0,

0 < α ≤ λ1, α > 2γ, α ≥ δ ≥ 0 and c+3
4 + λ2 + αγ − γ2 = 0.

Case III. M is locally isometric to a product Γ× M̄2, where Γ is a curve and M̄2

is a C-parallel surface, and either

(1) λ1 = 2λ2 =
√
c+3

2
√
2
, λ3 = −

√
c+3

2
√
2
, α = γ = δ = 0, β = ±

√
3(c+3)

4
√
2

. In this case

Γ is a helix in N with curvatures κ1 = 1√
2
and κ2 = 1, and M̄2 is locally

isometric to the 2-dimensional Euclidean sphere of radius ρ =
√

8
3(c+3) .

or

(2) λ1 =
λ2− c+3

4

λ
, λ2 = λ3 = λ = constant, α = β = γ = δ = 0, such

that −
√
c+3
2 < λ < 0. In this case Γ is a helix in N with curvatures

κ1 = λ1 and κ2 = 1, and M̄2 is the 2-dimensional Euclidean sphere of
radius ρ = 1√

c+3

4
+λ2

.

In the same paper [4] one obtains the explicit parametric equation of the flat
3-dimensional integral C-parallel submanifolds in S7(1). We shall prove, using the
same techniques, the following result.

Theorem 3.1. The position vector in the Euclidean space (R8, 〈, 〉) of a flat 3-
dimensional integral C-parallel submanifold in S7(c), c = 4

a
− 3 > −3, is

x(u, v, w) = λ√
λ2+ 1

a

cos( 1
aλ

u)e1 +
1√

a(γ−α)(2γ−α)
cos(λu− (γ − α)v)e2

+ 1√
aρ1(ρ1+ρ2)

cos(λu+ γv + ρ1w)e3

+ 1√
aρ2(ρ1+ρ2)

cos(λu+ γv − ρ2w)e4

+ λ√
λ2+ 1

a

sin( 1
aλ

u)Ie1 − 1√
a(γ−α)(2γ−α)

sin(λu− (γ − α)v)Ie2

− 1√
aρ1(ρ1+ρ2)

sin(λu + γv + ρ1w)Ie3

− 1√
aρ2(ρ1+ρ2)

sin(λu + γv − ρ2w)Ie4,
(3.6)
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where ρ1,2 = 1
2 (
√
4γ(2γ − α) + δ2 ± δ) and λ, α, γ, δ are real constants such that

− 1√
a
< λ < 0, 0 < α ≤ λ2− 1

a

λ
, α ≥ δ ≥ 0, α > 2γ, 1

a
+ λ2 + αγ − γ2 = 0, and

{ei, Iej}4i,j=1 are constant unit vectors orthogonal to one another.

Proof. Let us denote by ∇, ∇̇ and by ∇̃ the Levi-Civita connections on (S7, g),
(S7, g0) and (R8, 〈, 〉), respectively, where g0 is the canonical metric on S7 induced
by the canonical inner product 〈, 〉 from R8.

We denote by i the canonical inclusion of the submanifold S7 in R8. The map
i : (S7, g0) → (R8, 〈, 〉) is an isometric immersion, whilst the immersion i : (S7, g) →
(R8, 〈, 〉) is not isometric.

Assume that M3 is a flat integral C-parallel submanifold in S7(c), i.e. it is given
by the case II of the classification (see also Lemma 4.5 (ii) ([4])). Consider the
orthonormal basis {X1, X2, X3} on M . We have ∇M

Xi
Xj = 0, i, j = 1, 2, 3, where

∇M is the Levi-Civita connection on M endowed with the metric gM induced by
g. It follows that [Xi, Xj ] = 0 and therefore we can choose a local chart such that
x = x(u, v, w) with xu = X1, xv = X2 and xw = X3.

From (3.1) we see that the shape operators of M are given by

AϕX1
= A1 =




λ2− 1
a

λ
0 0

0 λ 0
0 0 λ


 , A2 =




0 λ 0
λ α 0
0 0 γ


 , A3 =




0 0 λ

0 0 γ

λ γ δ


 ,

and Aξ = 0.

Now, we shall prove that ∇̃X1
X1 =

λ2− 1
a

λ
ϕX1 − 1

a
x. Indeed, from the Gauss

equation of M in (S7, g) we have

∇X1
X1 = ∇M

X1
X1 +B(X1, X1) = B(X1, X1)

=
∑3

i=1 g(Ai(X1), X1)ϕXi + g(Aξ(X1), X1)ξ

= g(A1(X1), X1)ϕX1 =
λ2− 1

a

λ
ϕX1.

On the other hand, using Lemma 2.1 and the Gauss equation of (S7, g0) in (R8, 〈, 〉),
we obtain

∇X1
X1 = ∇̇X1

X1 = ∇̃X1
X1 + 〈X1, X1〉x = ∇̃X1

X1 +
1

a
x.

Next, we have

∇X1
ϕX1 = ϕ∇X1

X1 + g(X1, X1)ξ = −λ2 − 1
a

λ
X1 + ξ = −λ2 − 1

a

λ
X1 +

1

a
ξ0

and then, from Lemma 2.1 and the Gauss equation, it follows

∇X1
ϕX1 = ∇̇X1

ϕX1 = ∇̃X1
ϕX1.
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In the same way we get the following equations:

∇̃X1
X1 =

λ2− 1
a

λ
ϕX1 − 1

a
x ∇̃X2

ϕX2 = −λX1 − αX2 +
1
a
ξ0

∇̃X1
ϕX1 = −λ2− 1

a

λ
X1 +

1
a
ξ0 ∇̃X2

X3 = ∇̃X3
X2 = γϕX3

∇̃X1
X2 = ∇̃X2

X1 = λϕX2 ∇̃X2
ϕX3 = ∇̃X3

ϕX2 = −γX3

∇̃X1
ϕX2 = ∇̃X2

ϕX1 = −λX2 ∇̃X2
ξ0 = −ϕX2

∇̃X1
X3 = ∇̃X3

X1 = λϕX3 ∇̃X3
X3 = λϕX1 + γϕX2 + δϕX3 − 1

a
x

∇̃X1
ϕX3 = ∇̃X3

ϕX1 = −λX3 ∇̃X3
ϕX3 = −λX1 − γX2 − δX3 +

1
a
ξ0

∇̃X1
ξ0 = −ϕX1 ∇̃X3

ξ0 = −ϕX3

∇̃X2
X2 = λϕX1 + αϕX2 − 1

a
x (3.7)

where we also used the fact that

∇̃Xξ0 = ∇̇Xξ0 = −ϕX

for all vector fields X tangent to S7 and orthogonal to ξ (we recall that X is
orthogonal to ξ with respect to g if and only if it is orthogonal to ξ with respect
to g0).

From equations (3.7) we obtain:




xuuuu +
(
λ2 + 1

a2λ2

)
xuu + 1

a2x = 0

xuuv + λ2xv = 0, xuuw + λ2xw = 0, λxvw − γxuw = 0

λ2xuuu −
(
λ2 − 1

a

)
xuvv +

1
a2 xu − αλ

(
λ2 − 1

a

)
xv = 0(

λ2 − 1
a

)
xuvww + λ3γxuu + γ2

(
λ2 − 1

a

)
xuv + γδ

(
λ2 − 1

a

)
xuw + λγ

a2 x = 0.

(3.8)

From the first equation of (3.8) we get

x(u, v, w) = cos( 1
aλ

u)v1(v, w) + sin( 1
aλ

u)v2(v, w) + cos(λu)v3(v, w)

+ sin(λu)v4(v, w),

where v1(v, w), v2(v, w), v3(v, w) and v4(v, w) are R
8-valued functions of the vari-

ables v and w. By solving the following five equations of (3.8) one by one, we
get

x(u, v, w) = cos( 1
aλ

u)c1 + cos(λu− (γ − α)v)c2 + cos(λu+ γv + ρ1w)c3

+ cos(λu + γv − ρ2w)c4 + sin( 1
aλ

u)c5 + sin(λu − (γ − α)v)c6

+ sin(λu + γv + ρ1w)c7 + sin(λu + γv − ρ2w)c8, (3.9)
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where ρ1,2 = 1
2 (
√

4γ(2γ − α) + δ2 ± δ) and {ci} are constant vectors in R8.
The next step is to determine the conditions which must be satisfied by the

vectors {ci}. For this purpose we shall denote cij = 〈ci, cj〉.
In the expression of xw, obtained from (3.9), we take λu+ γv = ρ2w and get

xw = −ρ1 sin((ρ1 + ρ2)w)c3 + ρ1 cos((ρ1 + ρ2)w)c7 − ρ2c8

Then, computing 〈xw, xw〉 = 1
a
in w = 0, w = π

ρ1+ρ2
, w = π

2(ρ1+ρ2)
and in w =

− π
2(ρ1+ρ2)

we easily get
{
ρ21c77 + ρ22c88 − 2ρ1ρ2c78 = 1

a
, ρ21c77 + ρ22c88 + 2ρ1ρ2c78 = 1

a

ρ21c33 + ρ22c88 + 2ρ1ρ2c38 = 1
a
, ρ21c33 + ρ22c88 − 2ρ1ρ2c38 = 1

a

and it follows that c38 = c78 = 0, c33 = c77 and

ρ21c77 + ρ22c88 =
1

a
. (3.10)

In the same way, by taking λu+γv = −ρ1w, we obtain c47 = c48 = 0 and c44 = c88.
Since 〈xw , xw〉 = 1

a
at any triple (u, v, w), for λu + γv = π

2 and w = 0, we have
c34 = 0, and from 〈xw, xww〉 = 0, it results c37 = 0, when u = v = w = 0.
Now, computing

〈xww, xww〉 =
λ2 + γ2 + δ2

a
+

1

a2
=

ρ21 + ρ22 − ρ1ρ2

a

in u = v = w = 0, we have

ρ41c33 + ρ42c44 =
ρ21 + ρ22 − ρ1ρ2

a
. (3.11)

Since c33 = c77 and c44 = c88, from (3.10) and (3.11), one obtains

c33 = c77 =
1

aρ1(ρ1 + ρ2)
and c44 = c88 =

1

aρ2(ρ1 + ρ2)
.

We have just proved that

c3 ⊥ c4 ⊥ c7 ⊥ c8 ⊥ c3

and

|c3|2 = |c7|2 =
1

aρ1(ρ1 + ρ2)
, |c4|2 = |c8|2 =

1

aρ2(ρ1 + ρ2)
,

where ci ⊥ cj means 〈ci, cj〉 = 0 and |ci|2 = 〈ci, ci〉.
In order to calculate c2j and c6j , for j ∈ {2, 3, 4, 6, 7, 8}, we shall take first

λu = (γ−α)v and w = 0 in the expression of xv and, from 〈xv, xv〉 = 1
a
, we obtain

f1(v) = 〈xv, xv〉

= (γ − α)2c66 + γ2(c33 + c44) + 2γ(γ − α) sin((2γ − α)v)(c36 + c46)

−2γ(γ − α) cos((2γ − α)v)(c67 + c68)

= 1
a
.
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As f ′
1(0) = 0 and f ′

1(
π

2(2γ−α)) = 0 it follows

c36 + c46 = 0 and c67 + c68 = 0. (3.12)

Next, consider λu = (γ − α)v + π
2 and w = 0 in the expression of xv and, in the

same way as above, we get

c23 + c24 = 0 and c27 + c28 = 0. (3.13)

Now, consider

f2(w) = 〈xv(0, 0, w), xv(0, 0, w)〉

= (γ − α)2c66 + γ2(c33 + c88)

+2γ(γ − α) sin(ρ1w)c36 − 2γ(γ − α) cos(ρ1w)c67

−2γ(γ − α) sin(ρ2w)c46 − 2γ(γ − α) cos(ρ2w)c68

= 1
a

and, from f ′
2(0) = 0 and f ′′

2 (0) = 0, we have

ρ1c36 − ρ2c46 = 0 and ρ21c67 − ρ22c68 = 0,

which together with (3.12) give c36 = c46 = c67 = c68 = 0. Replacing in f1(v) =
1
a

we also obtain

c66 =
1

a(γ − α)(2γ − α)
.

Next, using 〈xv(
π
2λ , 0, 0), xv(

π
2λ , 0, 0)〉 = 1

a
, it results

c22 =
1

a(γ − α)(2γ − α)

and then, from (3.13), 〈xv(
π
2λ , 0, 0), xw(

π
2λ , 0, 0)〉 = 0 and 〈xv(0, 0, 0), xw(0, 0, 0)〉 =

0, we have c23 = c24 = c27 = c28 = 0.
With all values of cij obtained so far in mind, from 〈xv(

π
4λ , 0, 0), xv(

π
4λ , 0, 0)〉 = 1

a
,

we obtain c26 = 0 and thus

c2 ⊥ c3 ⊥ c4 ⊥ c6 ⊥ c7 ⊥ c8 ⊥ c2.

We have also proved that

|c2|2 = |c6|2 =
1

a(γ − α)(2γ − α)
.
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Now we only have to calculate c1j and c5j , for j = {1, 2, . . . , 8}. In order to do
this, we consider

f3(w) = 〈x(0, 0, w), x(0, 0, w)〉

= c11 + c22 + 2c12 + c33 + c44 + 2 cos(ρ1w)c13 + 2 cos(ρ2w)c14

+2 sin(ρ1w)c17 − 2 sin(ρ2w)c18

= 1

and, since f ′
3(0) = 0 and f ′′

3 (0) = 0, we have

ρ1c17 − ρ2c18 = 0 and ρ31c17 − ρ32c18 = 0,

which give c17 = c18 = 0. Replacing in f ′
3(w) = 0 we also obtain c13 = c14 = 0.

Next, as 〈x(0, 0, 0), xv(0, 0, 0)〉 = 0 and

〈x(0, 0, 0), xvv(0, 0, 0)〉 = −〈xv(0, 0, 0), xv(0, 0, 0)〉 = −1

a
,

we easily get c16 = 0 and c12 = 0. Thus, from f3(w) = 1, it results

c11 + c22 + c33 + c44 = 1,

which means that

c11 =
λ2

λ2 + 1
a

.

Now, consider

f4(w) = 〈xu(0, 0, w), xu(0, 0, w)〉

= 1
a2λ2 c11 + λ2(c66 + c33 + c44) +

2
a
c56 − 2

a
sin(ρ1w)c35

+ 2
a
sin(ρ2w)c45 +

2
a
cos(ρ1w)c57 +

2
a
cos(ρ2w)c58

= 1
a

and, from f ′
4(0) = 0, f ′′

4 (0) = 0, f ′′′
4 (0) = 0 and f

(iv)
4 (0) = 0, we have the following

equations {
ρ1c35 + ρ2c45 = 0, ρ21c57 + ρ22c58 = 0

ρ31c35 + ρ32c45 = 0, ρ41c57 + ρ42c58 = 0

with solutions c35 = c45 = c57 = c58 = 0.
From

〈xu(0, 0, 0), xv(0, 0, 0)〉 = 0, 〈xu(0, 0, 0), xvv(0, 0, 0)〉 = 0, 〈x(0, 0, 0), xu(0, 0, 0)〉 = 0

it results c56 = c25 = c15 = 0 and, from f4(w) =
1
a
, we have

c55 =
λ2

λ2 + 1
a

.
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So far we proved that ci ⊥ cj for every i, j ∈ {1, 2, . . . , 8} and |c1|2 = |c5|2 =
λ2

λ2+ 1
a

, |c2|2 = |c6|2 = 1
a(γ−α)(2γ−α) , |c3|2 = |c7|2 = 1

aρ1(ρ1+ρ2)
, |c4|2 = |c8|2 =

1
aρ2(ρ1+ρ2)

.

Finally, imposing M to be an integral submanifold we conclude that its position
vector in R8 is given by equation (3.6). �

Remark 3.2. Using complex coordinates, (3.6) can be rewritten as

x(u, v, w) = λ√
λ2+ 1

a

exp(i( 1
aλ

u))E1 +
1√

a(γ−α)(2γ−α)
exp(−i(λu − (γ − α)v))E2

+ 1√
aρ1(ρ1+ρ2)

exp(−i(λu + γv + ρ1w))E3

+ 1√
aρ2(ρ1+ρ2)

exp(−i(λu + γv − ρ2w))E4,

where {Ei}4i=1 is an orthonormal basis of C4 with respect to the usual Hermitian
inner product.
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