A NOTE ON INTEGRAL C-PARALLEL SUBMANIFOLDS IN $\mathbb{S}^{7}(c)$

D. FETCU AND C. ONICIUC

Abstract

We find the explicit parametric equations of the flat 3-dimensional integral C-parallel submanifolds in the sphere \mathbb{S}^{7} endowed with the deformed Sasakian structure defined by Tanno.

1. Introduction

During the last three decades, in the geometry of Sasakian space forms, a special attention was paid to the study of integral submanifolds, and several classification results were obtained (see, for example, [1]-[4], [6]-[9]). These results were often illustrated by explicit examples obtained using the odd dimensional unit Euclidean spheres endowed with the canonical Sasakian structure $\mathbb{S}^{2 n+1}(1)$, as the models of Sasakian space forms with constant φ-sectional curvature $c=1$.

The study of integral submanifolds of Sasakian space forms have also been made under some natural supplementary conditions. These conditions were formulated in terms of the mean curvature vector field H or the second fundamental form B. The most studied were the minimal, i.e. $H=0$, integral submanifolds (see, for example, $[5,8]$), and then the submanifolds with H or B being C-parallel, which means that the covariant derivative of H or B, in the normal bundle, is parallel to the characteristic vector field (see [1, 4]).

Because of its peculiarities, the 7 -sphere $\mathbb{S}^{7}(1)$ played an important role in most of the studies dedicated to integral submanifolds (see, for example, [3, 6, 9]).

In [4], the authors completely classified 3 -dimensional integral C-parallel submanifolds of 7 -dimensional Sasakian space forms, i.e. those integral submanifolds with C-parallel second fundamental form, and then they gave explicitly the flat integral C-parallel submanifolds in $\mathbb{S}^{7}(1)$.

The purpose of our paper is to go further and to obtain the explicit parametric equations of the flat integral C-parallel submanifolds in \mathbb{S}^{7} endowed with the deformed Sasakian structure introduced by Tanno, $\mathbb{S}^{7}(c)$, seen as the model of the Sasakian space form with constant φ-sectional curvature $c>-3$ (see [10]).

[^0]
2. Preliminaries

A triple (φ, ξ, η) is called a contact structure on a manifold $N^{2 n+1}$, where φ is a tensor field of type $(1,1)$ on N, ξ is a vector field and η is a 1-form, if

$$
\varphi^{2}=-I+\eta \otimes \xi, \quad \eta(\xi)=1
$$

A Riemannian metric g on N is said to be an associated metric, and then $(N, \varphi, \xi, \eta$, $g)$ is a contact metric manifold, if

$$
g(\varphi X, \varphi Y)=g(X, Y)-\eta(X) \eta(Y), \quad g(X, \varphi Y)=d \eta(X, Y), \quad \forall X, Y \in C^{\infty}(T N)
$$

A contact metric structure (φ, ξ, η, g) is called normal if

$$
N_{\varphi}+2 d \eta \otimes \xi=0
$$

where

$$
N_{\varphi}(X, Y)=[\varphi X, \varphi Y]-\varphi[\varphi X, Y]-\varphi[X, \varphi Y]+\varphi^{2}[X, Y], \quad \forall X, Y \in C^{\infty}(T N)
$$

is the Nijenhuis tensor field of φ.
A contact metric manifold $(N, \varphi, \xi, \eta, g)$ is a Sasakian manifold if it is normal or, equivalently, if

$$
\left(\nabla_{X} \varphi\right)(Y)=g(X, Y) \xi-\eta(Y) X, \quad \forall X, Y \in C^{\infty}(T N)
$$

(see [5]). We note that on a Sasakian manifold we have $\nabla_{X} \xi=-\varphi X$.
Let $(N, \varphi, \xi, \eta, g)$ be a Sasakian manifold. The sectional curvature of a 2-plane generated by X and φX, where X is a unit vector orthogonal to ξ, is called φ-sectional curvature determined by X. A Sasakian manifold with constant φ sectional curvature c is called a Sasakian space form and it is denoted by $N(c)$. The curvature tensor field of a Sasakian space form $N(c)$ is given by

$$
\begin{aligned}
R(X, Y) Z & =\frac{c+3}{4}\{g(Z, Y) X-g(Z, X) Y\}+\frac{c-1}{4}\{\eta(Z) \eta(X) Y \\
& -\eta(Z) \eta(Y) X+g(Z, X) \eta(Y) \xi-g(Z, Y) \eta(X) \xi \\
& +g(Z, \varphi Y) \varphi X-g(Z, \varphi X) \varphi Y+2 g(X, \varphi Y) \varphi Z\}
\end{aligned}
$$

The classification of the complete, simply connected Sasakian space forms $N(c)$ was given in [10]. Thus, if $c=1$ then $N(1)$ is isometric to the unit sphere $\mathbb{S}^{2 n+1}$ endowed with its canonical Sasakian structure, and if $c>-3$ then $N(c)$ is isometric to $\mathbb{S}^{2 n+1}$ endowed with the deformed Sasakian structure given by Tanno, which we present below.

Let $\mathbb{S}^{2 n+1}=\left\{z \in \mathbb{C}^{n+1}:|z|=1\right\}$ be the unit $2 n+1$-dimensional sphere endowed with its standard metric field g_{0}. Consider the following structure tensor fields on $\mathbb{S}^{2 n+1}: \xi_{0}=-\mathcal{I} z$ for each $z \in \mathbb{S}^{2 n+1}$, where \mathcal{I} is the usual complex structure on \mathbb{C}^{n+1} defined by

$$
\mathcal{I} z=\left(-y^{1}, \ldots,-y^{n+1}, x^{1}, \ldots, x^{n+1}\right)
$$

for $z=\left(z^{1}, \ldots, z^{n+1}\right)=\left(x^{1}, \ldots, x^{n+1}, y^{1}, \ldots, y^{n+1}\right), z^{k}=x^{k}+\mathrm{i} y^{k}$, and $\varphi_{0}=s \circ \mathcal{I}$, where $s: T_{z} \mathbb{C}^{n+1} \rightarrow T_{z} \mathbb{S}^{2 n+1}$ denotes the orthogonal projection. Equipped with these tensors, $\mathbb{S}^{2 n+1}$ becomes a Sasakian space form with φ_{0}-sectional curvature equal to 1 , which is denoted by $\mathbb{S}^{2 n+1}(1)$.

Now, consider the deformed Sasakian structure on $\mathbb{S}^{2 n+1}$,

$$
\eta=a \eta_{0}, \quad \xi=\frac{1}{a} \xi_{0}, \quad \varphi=\varphi_{0}, \quad g=a g_{0}+a(a-1) \eta_{0} \otimes \eta_{0}
$$

where a is a positive constant. The structure (φ, ξ, η, g) is still a Sasakian structure and $\left(\mathbb{S}^{2 n+1}, \varphi, \xi, \eta, g\right)$ is a Sasakian space form with constant φ-sectional curvature $c=\frac{4}{a}-3>-3$ denoted by $\mathbb{S}^{2 n+1}(c)$ (see also [5]).

A submanifold M^{m} of a Sasakian manifold ($\left.N^{2 n+1}, \varphi, \xi, \eta, g\right)$ is called an integral submanifold if $\eta(X)=0$ for any vector field X tangent to M. We have $\varphi(T M) \subset$ $N M$ and $m \leq n$, where $T M$ and $N M$ are the tangent bundle and the normal bundle of M, respectively. Moreover, for $m=n$, one gets $\varphi(N M)=T M$. If we denote by B the second fundamental form of M then, by a straightforward computation, one obtains the following relation which we shall use later in this paper

$$
g(B(X, Y), \varphi Z)=g(B(X, Z), \varphi Y)
$$

for any vector fields X, Y and Z tangent to M (see also [4, 8]).
If M^{m}, with $m \leq n$, is a submanifold of the sphere $\mathbb{S}^{2 n+1}$ then M is integral with respect to its canonical Sasakian structure $\left(\varphi_{0}, \xi_{0}, \eta_{0}, g_{0}\right)$ if and only if it is integral with respect to the deformed one (φ, ξ, η, g), since $\eta_{0}(X)=0$ if and only if $\eta(X)=0$ for any vector field X tangent to M. Moreover, if M is an integral submanifold of $\mathbb{S}^{2 n+1}$ then the normal bundle of M in $\left(\mathbb{S}^{2 n+1}, g_{0}\right)$ coincides with the normal bundle of M in $\left(\mathbb{S}^{2 n+1}, g\right)$, since for any $X \in T_{p} M$ and $Y \in T_{p} \mathbb{S}^{2 n+1}$, where p is an arbitrary point in M, we have $g_{0}(X, Y)=0$ if and only if $g(X, Y)=0$.

Next, we consider M to be an integral submanifold of $\mathbb{S}^{2 n+1}$, and denote by g_{0}^{M} and g^{M} the induced metrics on M by g_{0} and g, respectively. Denote by $\dot{\nabla}^{M}$ and ∇^{M} their Levi-Civita connections. Then the identity map 1: $\left(M, g_{0}^{M}\right) \rightarrow\left(M, g^{M}\right)$ is an homothety and therefore $\dot{\nabla}^{M}=\nabla^{M}$.

The following Lemma holds.
Lemma 2.1. Let M be an integral submanifold of $\mathbb{S}^{2 n+1}$. If X and Y are vector fields tangent to M then

$$
\dot{\nabla}_{X} Y=\nabla_{X} Y \quad \text { and } \quad \dot{\nabla}_{X} \varphi Y=\nabla_{X} \varphi Y
$$

where $\dot{\nabla}$ and ∇ are the Levi-Civita connections on $\left(\mathbb{S}^{2 n+1}, g_{0}\right)$ and $\left(\mathbb{S}^{2 n+1}, g\right)$, respectively.

Proof. From the definition of the metric g we have, for any vector fields X, Y tangent to M and Z tangent to $\mathbb{S}^{2 n+1}$,

$$
g\left(\nabla_{X} Y, Z\right)=a g_{0}\left(\nabla_{X} Y, Z\right)+a(a-1) \eta_{0}\left(\nabla_{X} Y\right) \eta_{0}(Z)
$$

But, since M is integral,

$$
\eta_{0}\left(\nabla_{X} Y\right)=\frac{1}{a} \eta\left(\nabla_{X} Y\right)=\frac{1}{a} g\left(\nabla_{X} Y, \xi\right)=-\frac{1}{a} g\left(Y, \nabla_{X} \xi\right)=\frac{1}{a} g(Y, \varphi X)=0
$$

and so

$$
g\left(\nabla_{X} Y, Z\right)=a g_{0}\left(\nabla_{X} Y, Z\right)
$$

On the other hand, applying the characterization of the Levi-Civita connection for ∇ and $\dot{\nabla}$, we obtain

$$
g\left(\nabla_{X} Y, Z\right)=a g_{0}\left(\dot{\nabla}_{X} Y, Z\right)
$$

From the last two relations we get

$$
g_{0}\left(\nabla_{X} Y, Z\right)=g_{0}\left(\dot{\nabla}_{X} Y, Z\right)
$$

and therefore $\dot{\nabla}_{X} Y=\nabla_{X} Y$ for any vector fields X and Y tangent to M.
For the second relation, we use $\left(\nabla_{X} \varphi\right) Y=g(X, Y) \xi-\eta(Y) X$ and $\left(\dot{\nabla}_{X} \varphi\right) Y=$ $g_{0}(X, Y) \xi_{0}-\eta_{0}(Y) X$ for vector fields X and Y tangent to M, and come to the conclusion.

We shall end this section by recalling the notion of an integral C-parallel submanifold of a Sasakian manifold (see, for example, [4]). Let M^{m} be an integral submanifold of a Sasakian manifold $\left(N^{2 n+1}, \varphi, \xi, \eta, g\right)$. Then M is said to be $i n$ tegral C-parallel if $\nabla^{\perp} B$ is parallel to the characteristic vector field ξ, where B is the second fundamental form of M and $\nabla^{\perp} B$ is given by

$$
\left(\nabla^{\perp} B\right)(X, Y, Z)=\nabla_{X}^{\perp} B(Y, Z)-B\left(\nabla_{X} Y, Z\right)-B\left(Y, \nabla_{X} Z\right)
$$

for any vector fields X, Y, Z tangent to M, ∇^{\perp} and ∇ being the normal connection and the Levi-Civita connection on M, respectively. This means $\left(\nabla^{\perp} B\right)(X, Y, Z)=$ $g(\varphi X, B(Y, Z)) \xi$. If we denote $S(X, Y, Z)=g(\varphi X, B(Y, Z))$, then S is a totally symmetric tensor field of type $(0,3)$ on M.

It is easy to see that, if the dimension of an integral C-parallel submanifold M is maximal, i.e. it is equal to n, then the mean curvature $|H|$ of M is constant.

3. Main result

In [4] Baikoussis, Blair and Koufogiorgios classified the 3-dimensional integral C-parallel submanifolds in a Sasakian space form $\left(N^{7}(c), \varphi, \xi, \eta, g\right)$. In order to obtain the classification, they worked with a special local orthonormal basis (see also [6]). Here we shall briefly recall how this basis is constructed.

Let i: $M^{3} \rightarrow N^{7}(c)$ be an integral submanifold of constant mean curvature. Let p be an arbitrary point of M, and consider the function $f_{p}: U_{p} M \rightarrow \mathbb{R}$ given by

$$
f_{p}(u)=g(B(u, u), \varphi u)
$$

where $U_{p} M=\left\{u \in T_{p} M: g(u, u)=1\right\}$ is the unit sphere in the tangent space $T_{p} M$. If $f_{p}(u)=0$, for all $u \in U_{p} M$, then, for any $v_{1}, v_{2} \in U_{p} M$ such that $g\left(v_{1}, v_{2}\right)=0$ we have that

$$
g\left(B\left(v_{1}, v_{1}\right), \varphi v_{1}\right)=0 \quad \text { and } \quad g\left(B\left(v_{1}, v_{1}\right), \varphi v_{2}\right)=0
$$

We obtain $B\left(v_{1}, v_{1}\right)=0$, and then it follows that B vanishes at the point p.
Next, assume that the function f_{p} does not vanish identically. Since $U_{p} M$ is compact, f_{p} attains an absolute maximum at a unit vector X_{1}. It follows that

$$
\left\{\begin{array}{l}
g\left(B\left(X_{1}, X_{1}\right), \varphi X_{1}\right)>0, \quad g\left(B\left(X_{1}, X_{1}\right), \varphi X_{1}\right) \geq|g(B(w, w), \varphi w)| \\
g\left(B\left(X_{1}, X_{1}\right), \varphi w\right)=0, \quad g\left(B\left(X_{1}, X_{1}\right), \varphi X_{1}\right) \geq 2 g\left(B(w, w), \varphi X_{1}\right)
\end{array}\right.
$$

where w is a unit vector tangent to M at p and orthogonal to X_{1}. It is easy to see that X_{1} is an eigenvector of the shape operator $A_{1}=A_{\varphi X_{1}}$ with the corresponding eigenvalue λ_{1}. Then, since A_{1} is symmetric, we consider X_{2} and X_{3} to be unit eigenvectors of A_{1}, orthogonal to each other and to X_{1}, with the corresponding eigenvalues λ_{2} and λ_{3}. Further, we distinguish two cases.

If $\lambda_{2} \neq \lambda_{3}$, we can choose X_{2} and X_{3} such that

$$
\left\{\begin{array}{l}
g\left(B\left(X_{2}, X_{2}\right), \varphi X_{2}\right) \geq 0, \quad g\left(B\left(X_{3}, X_{3}\right), \varphi X_{3}\right) \geq 0 \\
g\left(B\left(X_{2}, X_{2}\right), \varphi X_{2}\right) \geq g\left(B\left(X_{3}, X_{3}\right), \varphi X_{3}\right)
\end{array}\right.
$$

If $\lambda_{2}=\lambda_{3}$, we consider $f_{1, p}$ the restriction of f_{p} to $\left\{w \in U_{p} M: g\left(w, X_{1}\right)=0\right\}$, and we have two subcases:
(1) the function $f_{1, p}$ is identically zero. In this case, we have

$$
\begin{cases}g\left(B\left(X_{2}, X_{2}\right), \varphi X_{2}\right)=0, & g\left(B\left(X_{2}, X_{2}\right), \varphi X_{3}\right)=0 \\ g\left(B\left(X_{2}, X_{3}\right), \varphi X_{3}\right)=0, & g\left(B\left(X_{3}, X_{3}\right), \varphi X_{3}\right)=0\end{cases}
$$

(2) the function $f_{1, p}$ does not vanish identically. Then we choose X_{2} such that $f_{1, p}\left(X_{2}\right)$ is an absolute maximum. We have that

$$
\begin{cases}g\left(B\left(X_{2}, X_{2}\right), \varphi X_{2}\right)>0, & g\left(B\left(X_{2}, X_{2}\right), \varphi X_{2}\right) \geq g\left(B\left(X_{3}, X_{3}\right), \varphi X_{3}\right) \geq 0 \\ g\left(B\left(X_{2}, X_{2}\right), \varphi X_{3}\right)=0, & g\left(B\left(X_{2}, X_{2}\right), \varphi X_{2}\right) \geq 2 g\left(B\left(X_{3}, X_{3}\right), \varphi X_{2}\right)\end{cases}
$$

Now, with respect to the orthonormal basis $\left\{X_{1}, X_{2}, X_{3}\right\}$, the shape operators A_{1}, $A_{2}=A_{\varphi X_{2}}$ and $A_{3}=A_{\varphi X_{3}}$, at p, can be written as follows

$$
A_{1}=\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \tag{3.1}\\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right), \quad A_{2}=\left(\begin{array}{ccc}
0 & \lambda_{2} & 0 \\
\lambda_{2} & \alpha & \beta \\
0 & \beta & \gamma
\end{array}\right), \quad A_{3}=\left(\begin{array}{ccc}
0 & 0 & \lambda_{3} \\
0 & \beta & \gamma \\
\lambda_{3} & \gamma & \delta
\end{array}\right)
$$

We also have $A_{0}=A_{\xi}=0$. With these notations we have

$$
\begin{equation*}
\lambda_{1}>0, \quad \lambda_{1} \geq|\alpha|, \quad \lambda_{1} \geq|\delta|, \quad \lambda_{1} \geq 2 \lambda_{2}, \quad \lambda_{1} \geq 2 \lambda_{3} \tag{3.2}
\end{equation*}
$$

For $\lambda_{2} \neq \lambda_{3}$ we get

$$
\begin{equation*}
\alpha \geq 0, \quad \delta \geq 0 \quad \text { and } \quad \alpha \geq \delta \tag{3.3}
\end{equation*}
$$

and for $\lambda_{2}=\lambda_{3}$ we obtain that

$$
\begin{equation*}
\alpha=\beta=\gamma=\delta=0 \tag{3.4}
\end{equation*}
$$

or

$$
\begin{equation*}
\alpha>0, \quad \delta \geq 0, \quad \alpha \geq \delta, \quad \beta=0 \quad \text { and } \quad \alpha \geq 2 \gamma \tag{3.5}
\end{equation*}
$$

We can extend X_{1} on a neighbourhood V_{p} of p such that $X_{1}(q)$ is a maximal point of $f_{q}: U_{q} M \rightarrow \mathbb{R}$, for any point q of V_{p}.

If the eigenvalues of A_{1} have constant multiplicities, then the above basis $\left\{X_{1}, X_{2}\right.$, $\left.X_{3}\right\}$, defined at p, can be smoothly extended and we can work on the open dense subset of M defined by this property.

Using this basis, in [4], the authors proved that, when M is an integral C parallel submanifold, the functions $\lambda_{i}, i=\overline{1,3}$, and $\alpha, \beta, \gamma, \delta$ are constant on
V_{p}, and then classified all 3-dimensional integral C-parallel submanifolds in a 7 dimensional Sasakian space form.

According to that classification, if $c>-3$ then M is an integral C-parallel submanifold if and only if either:
Case I. M is totally geodesic, with the Gaussian curvature $K=\frac{c+3}{4}$.
Case II. M is flat, locally it is a product of three curves, which are helices of osculating orders $r \leq 4$, and $\lambda_{1}=\frac{\lambda^{2}-\frac{c+3}{4}}{\lambda} \neq 0, \lambda_{2}=\lambda_{3}=\lambda=$ constant $\neq 0$, $\alpha=$ constant, $\beta=0, \gamma=$ constant, $\delta=$ constant, such that $-\frac{\sqrt{c+3}}{2}<\lambda<0$, $0<\alpha \leq \lambda_{1}, \alpha>2 \gamma, \alpha \geq \delta \geq 0$ and $\frac{c+3}{4}+\lambda^{2}+\alpha \gamma-\gamma^{2}=0$.
Case III. M is locally isometric to a product $\Gamma \times \bar{M}^{2}$, where Γ is a curve and \bar{M}^{2} is a C-parallel surface, and either
(1) $\lambda_{1}=2 \lambda_{2}=\frac{\sqrt{c+3}}{2 \sqrt{2}}, \lambda_{3}=-\frac{\sqrt{c+3}}{2 \sqrt{2}}, \alpha=\gamma=\delta=0, \beta= \pm \frac{\sqrt{3(c+3)}}{4 \sqrt{2}}$. In this case Γ is a helix in N with curvatures $\kappa_{1}=\frac{1}{\sqrt{2}}$ and $\kappa_{2}=1$, and \bar{M}^{2} is locally isometric to the 2-dimensional Euclidean sphere of radius $\rho=\sqrt{\frac{8}{3(c+3)}}$. or
(2) $\lambda_{1}=\frac{\lambda^{2}-\frac{c+3}{4}}{\frac{\lambda}{c+3}}, \lambda_{2}=\lambda_{3}=\lambda=$ constant, $\alpha=\beta=\gamma=\delta=0$, such that $-\frac{\sqrt{c+3}}{2}<\lambda<0$. In this case Γ is a helix in N with curvatures $\kappa_{1}=\lambda_{1}$ and $\kappa_{2}=1$, and \bar{M}^{2} is the 2-dimensional Euclidean sphere of radius $\rho=\frac{1}{\sqrt{\frac{c+3}{4}+\lambda^{2}}}$.
In the same paper [4] one obtains the explicit parametric equation of the flat 3 -dimensional integral C-parallel submanifolds in $\mathbb{S}^{7}(1)$. We shall prove, using the same techniques, the following result.

Theorem 3.1. The position vector in the Euclidean space $\left(\mathbb{R}^{8},\langle\rangle,\right)$ of a flat 3dimensional integral C-parallel submanifold in $\mathbb{S}^{7}(c), c=\frac{4}{a}-3>-3$, is

$$
\begin{align*}
x(u, v, w) & =\frac{\lambda}{\sqrt{\lambda^{2}+\frac{1}{a}}} \cos \left(\frac{1}{a \lambda} u\right) e_{1}+\frac{1}{\sqrt{a(\gamma-\alpha)(2 \gamma-\alpha)}} \cos (\lambda u-(\gamma-\alpha) v) e_{2} \\
& +\frac{1}{\sqrt{a \rho_{1}\left(\rho_{1}+\rho_{2}\right)}} \cos \left(\lambda u+\gamma v+\rho_{1} w\right) e_{3} \\
& +\frac{1}{\sqrt{a \rho_{2}\left(\rho_{1}+\rho_{2}\right)}} \cos \left(\lambda u+\gamma v-\rho_{2} w\right) e_{4} \\
& +\frac{\lambda}{\sqrt{\lambda^{2}+\frac{1}{a}}} \sin \left(\frac{1}{a \lambda} u\right) \mathcal{I} e_{1}-\frac{1}{\sqrt{a(\gamma-\alpha)(2 \gamma-\alpha)}} \sin (\lambda u-(\gamma-\alpha) v) \mathcal{I} e_{2} \\
& -\frac{1}{\sqrt{a \rho_{1}\left(\rho_{1}+\rho_{2}\right)}} \sin \left(\lambda u+\gamma v+\rho_{1} w\right) \mathcal{I} e_{3} \\
& -\frac{1}{\sqrt{a \rho_{2}\left(\rho_{1}+\rho_{2}\right)}} \sin \left(\lambda u+\gamma v-\rho_{2} w\right) \mathcal{I} e_{4}, \tag{3.6}
\end{align*}
$$

where $\rho_{1,2}=\frac{1}{2}\left(\sqrt{4 \gamma(2 \gamma-\alpha)+\delta^{2}} \pm \delta\right)$ and $\lambda, \alpha, \gamma, \delta$ are real constants such that $-\frac{1}{\sqrt{a}}<\lambda<0,0<\alpha \leq \frac{\lambda^{2}-\frac{1}{a}}{\lambda}, \alpha \geq \delta \geq 0, \alpha>2 \gamma, \frac{1}{a}+\lambda^{2}+\alpha \gamma-\gamma^{2}=0$, and $\left\{e_{i}, \mathcal{I} e_{j}\right\}_{i, j=1}^{4}$ are constant unit vectors orthogonal to one another.

Proof. Let us denote by $\nabla, \dot{\nabla}$ and by $\widetilde{\nabla}$ the Levi-Civita connections on $\left(\mathbb{S}^{7}, g\right)$, $\left(\mathbb{S}^{7}, g_{0}\right)$ and $\left(\mathbb{R}^{8},\langle\rangle,\right)$, respectively, where g_{0} is the canonical metric on \mathbb{S}^{7} induced by the canonical inner product \langle,$\rangle from \mathbb{R}^{8}$.

We denote by \mathbf{i} the canonical inclusion of the submanifold \mathbb{S}^{7} in \mathbb{R}^{8}. The map $\mathbf{i}:\left(\mathbb{S}^{7}, g_{0}\right) \rightarrow\left(\mathbb{R}^{8},\langle\rangle,\right)$ is an isometric immersion, whilst the immersion $\mathbf{i}:\left(\mathbb{S}^{7}, g\right) \rightarrow$ $\left(\mathbb{R}^{8},\langle\rangle,\right)$ is not isometric.

Assume that M^{3} is a flat integral C-parallel submanifold in $\mathbb{S}^{7}(c)$, i.e. it is given by the case II of the classification (see also Lemma 4.5 (ii) ([4])). Consider the orthonormal basis $\left\{X_{1}, X_{2}, X_{3}\right\}$ on M. We have $\nabla_{X_{i}}^{M} X_{j}=0, i, j=1,2,3$, where ∇^{M} is the Levi-Civita connection on M endowed with the metric g^{M} induced by g. It follows that $\left[X_{i}, X_{j}\right]=0$ and therefore we can choose a local chart such that $x=x(u, v, w)$ with $x_{u}=X_{1}, x_{v}=X_{2}$ and $x_{w}=X_{3}$.

From (3.1) we see that the shape operators of M are given by

$$
A_{\varphi X_{1}}=A_{1}=\left(\begin{array}{ccc}
\frac{\lambda^{2}-\frac{1}{a}}{\lambda} & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right), \quad A_{2}=\left(\begin{array}{ccc}
0 & \lambda & 0 \\
\lambda & \alpha & 0 \\
0 & 0 & \gamma
\end{array}\right), \quad A_{3}=\left(\begin{array}{ccc}
0 & 0 & \lambda \\
0 & 0 & \gamma \\
\lambda & \gamma & \delta
\end{array}\right)
$$

and $A_{\xi}=0$.
Now, we shall prove that $\widetilde{\nabla}_{X_{1}} X_{1}=\frac{\lambda^{2}-\frac{1}{a}}{\lambda} \varphi X_{1}-\frac{1}{a} x$. Indeed, from the Gauss equation of M in $\left(\mathbb{S}^{7}, g\right)$ we have

$$
\begin{aligned}
\nabla_{X_{1}} X_{1} & =\nabla_{X_{1}}^{M} X_{1}+B\left(X_{1}, X_{1}\right)=B\left(X_{1}, X_{1}\right) \\
& =\sum_{i=1}^{3} g\left(A_{i}\left(X_{1}\right), X_{1}\right) \varphi X_{i}+g\left(A_{\xi}\left(X_{1}\right), X_{1}\right) \xi \\
& =g\left(A_{1}\left(X_{1}\right), X_{1}\right) \varphi X_{1}=\frac{\lambda^{2}-\frac{1}{a}}{\lambda} \varphi X_{1}
\end{aligned}
$$

On the other hand, using Lemma 2.1 and the Gauss equation of $\left(\mathbb{S}^{7}, g_{0}\right)$ in $\left(\mathbb{R}^{8},\langle\rangle,\right)$, we obtain

$$
\nabla_{X_{1}} X_{1}=\dot{\nabla}_{X_{1}} X_{1}=\widetilde{\nabla}_{X_{1}} X_{1}+\left\langle X_{1}, X_{1}\right\rangle x=\widetilde{\nabla}_{X_{1}} X_{1}+\frac{1}{a} x .
$$

Next, we have

$$
\nabla_{X_{1}} \varphi X_{1}=\varphi \nabla_{X_{1}} X_{1}+g\left(X_{1}, X_{1}\right) \xi=-\frac{\lambda^{2}-\frac{1}{a}}{\lambda} X_{1}+\xi=-\frac{\lambda^{2}-\frac{1}{a}}{\lambda} X_{1}+\frac{1}{a} \xi_{0}
$$

and then, from Lemma 2.1 and the Gauss equation, it follows

$$
\nabla_{X_{1}} \varphi X_{1}=\dot{\nabla}_{X_{1}} \varphi X_{1}=\widetilde{\nabla}_{X_{1}} \varphi X_{1}
$$

In the same way we get the following equations:

$$
\begin{align*}
\widetilde{\nabla}_{X_{1}} X_{1} & =\frac{\lambda^{2}-\frac{1}{a}}{\lambda} \varphi X_{1}-\frac{1}{a} x & \widetilde{\nabla}_{X_{2}} \varphi X_{2} & =-\lambda X_{1}-\alpha X_{2}+\frac{1}{a} \xi_{0} \\
\widetilde{\nabla}_{X_{1}} \varphi X_{1} & =-\frac{\lambda^{2}-\frac{1}{a}}{\lambda} X_{1}+\frac{1}{a} \xi_{0} & \widetilde{\nabla}_{X_{2}} X_{3} & =\widetilde{\nabla}_{X_{3}} X_{2}=\gamma \varphi X_{3} \\
\widetilde{\nabla}_{X_{1}} X_{2} & =\widetilde{\nabla}_{X_{2}} X_{1}=\lambda \varphi X_{2} & \widetilde{\nabla}_{X_{2}} \varphi X_{3} & =\widetilde{\nabla}_{X_{3}} \varphi X_{2}=-\gamma X_{3} \\
\widetilde{\nabla}_{X_{1}} \varphi X_{2} & =\widetilde{\nabla}_{X_{2}} \varphi X_{1}=-\lambda X_{2} & \widetilde{\nabla}_{X_{2}} \xi_{0} & =-\varphi X_{2} \\
\widetilde{\nabla}_{X_{1}} X_{3} & =\widetilde{\nabla}_{X_{3}} X_{1}=\lambda \varphi X_{3} & \widetilde{\nabla}_{X_{3}} X_{3} & =\lambda \varphi X_{1}+\gamma \varphi X_{2}+\delta \varphi X_{3}-\frac{1}{a} x \\
\widetilde{\nabla}_{X_{1}} \varphi X_{3} & =\widetilde{\nabla}_{X_{3}} \varphi X_{1}=-\lambda X_{3} & \widetilde{\nabla}_{X_{3}} \varphi X_{3} & =-\lambda X_{1}-\gamma X_{2}-\delta X_{3}+\frac{1}{a} \xi_{0} \\
\widetilde{\nabla}_{X_{1}} \xi_{0} & =-\varphi X_{1} & \widetilde{\nabla}_{X_{3}} \xi_{0} & =-\varphi X_{3} \\
\widetilde{\nabla}_{X_{2}} X_{2} & =\lambda \varphi X_{1}+\alpha \varphi X_{2}-\frac{1}{a} x & & \tag{3.7}
\end{align*}
$$

where we also used the fact that

$$
\widetilde{\nabla}_{X} \xi_{0}=\dot{\nabla}_{X} \xi_{0}=-\varphi X
$$

for all vector fields X tangent to \mathbb{S}^{7} and orthogonal to ξ (we recall that X is orthogonal to ξ with respect to g if and only if it is orthogonal to ξ with respect to g_{0}).

From equations (3.7) we obtain:

$$
\left\{\begin{array}{l}
x_{u u u u}+\left(\lambda^{2}+\frac{1}{a^{2} \lambda^{2}}\right) x_{u u}+\frac{1}{a^{2}} x=0 \tag{3.8}\\
x_{u u v}+\lambda^{2} x_{v}=0, \quad x_{u u w}+\lambda^{2} x_{w}=0, \quad \lambda x_{v w}-\gamma x_{u w}=0 \\
\lambda^{2} x_{u u u}-\left(\lambda^{2}-\frac{1}{a}\right) x_{u v v}+\frac{1}{a^{2}} x_{u}-\alpha \lambda\left(\lambda^{2}-\frac{1}{a}\right) x_{v}=0 \\
\left(\lambda^{2}-\frac{1}{a}\right) x_{u v w w}+\lambda^{3} \gamma x_{u u}+\gamma^{2}\left(\lambda^{2}-\frac{1}{a}\right) x_{u v}+\gamma \delta\left(\lambda^{2}-\frac{1}{a}\right) x_{u w}+\frac{\lambda \gamma}{a^{2}} x=0
\end{array}\right.
$$

From the first equation of (3.8) we get

$$
\begin{aligned}
x(u, v, w) & =\cos \left(\frac{1}{a \lambda} u\right) v_{1}(v, w)+\sin \left(\frac{1}{a \lambda} u\right) v_{2}(v, w)+\cos (\lambda u) v_{3}(v, w) \\
& +\sin (\lambda u) v_{4}(v, w),
\end{aligned}
$$

where $v_{1}(v, w), v_{2}(v, w), v_{3}(v, w)$ and $v_{4}(v, w)$ are \mathbb{R}^{8}-valued functions of the variables v and w. By solving the following five equations of (3.8) one by one, we get

$$
\begin{align*}
x(u, v, w) & =\cos \left(\frac{1}{a \lambda} u\right) c_{1}+\cos (\lambda u-(\gamma-\alpha) v) c_{2}+\cos \left(\lambda u+\gamma v+\rho_{1} w\right) c_{3} \\
& +\cos \left(\lambda u+\gamma v-\rho_{2} w\right) c_{4}+\sin \left(\frac{1}{a \lambda} u\right) c_{5}+\sin (\lambda u-(\gamma-\alpha) v) c_{6} \\
& +\sin \left(\lambda u+\gamma v+\rho_{1} w\right) c_{7}+\sin \left(\lambda u+\gamma v-\rho_{2} w\right) c_{8}, \tag{3.9}
\end{align*}
$$

where $\rho_{1,2}=\frac{1}{2}\left(\sqrt{4 \gamma(2 \gamma-\alpha)+\delta^{2}} \pm \delta\right)$ and $\left\{c_{i}\right\}$ are constant vectors in \mathbb{R}^{8}.
The next step is to determine the conditions which must be satisfied by the vectors $\left\{c_{i}\right\}$. For this purpose we shall denote $c_{i j}=\left\langle c_{i}, c_{j}\right\rangle$.

In the expression of x_{w}, obtained from (3.9), we take $\lambda u+\gamma v=\rho_{2} w$ and get

$$
x_{w}=-\rho_{1} \sin \left(\left(\rho_{1}+\rho_{2}\right) w\right) c_{3}+\rho_{1} \cos \left(\left(\rho_{1}+\rho_{2}\right) w\right) c_{7}-\rho_{2} c_{8}
$$

Then, computing $\left\langle x_{w}, x_{w}\right\rangle=\frac{1}{a}$ in $w=0, w=\frac{\pi}{\rho_{1}+\rho_{2}}, w=\frac{\pi}{2\left(\rho_{1}+\rho_{2}\right)}$ and in $w=$ $-\frac{\pi}{2\left(\rho_{1}+\rho_{2}\right)}$ we easily get

$$
\begin{cases}\rho_{1}^{2} c_{77}+\rho_{2}^{2} c_{88}-2 \rho_{1} \rho_{2} c_{78}=\frac{1}{a}, & \rho_{1}^{2} c_{77}+\rho_{2}^{2} c_{88}+2 \rho_{1} \rho_{2} c_{78}=\frac{1}{a} \\ \rho_{1}^{2} c_{33}+\rho_{2}^{2} c_{88}+2 \rho_{1} \rho_{2} c_{38}=\frac{1}{a}, & \rho_{1}^{2} c_{33}+\rho_{2}^{2} c_{88}-2 \rho_{1} \rho_{2} c_{38}=\frac{1}{a}\end{cases}
$$

and it follows that $c_{38}=c_{78}=0, c_{33}=c_{77}$ and

$$
\begin{equation*}
\rho_{1}^{2} c_{77}+\rho_{2}^{2} c_{88}=\frac{1}{a} . \tag{3.10}
\end{equation*}
$$

In the same way, by taking $\lambda u+\gamma v=-\rho_{1} w$, we obtain $c_{47}=c_{48}=0$ and $c_{44}=c_{88}$. Since $\left\langle x_{w}, x_{w}\right\rangle=\frac{1}{a}$ at any triple (u, v, w), for $\lambda u+\gamma v=\frac{\pi}{2}$ and $w=0$, we have $c_{34}=0$, and from $\left\langle x_{w}, x_{w w}\right\rangle=0$, it results $c_{37}=0$, when $u=v=w=0$.
Now, computing

$$
\left\langle x_{w w}, x_{w w}\right\rangle=\frac{\lambda^{2}+\gamma^{2}+\delta^{2}}{a}+\frac{1}{a^{2}}=\frac{\rho_{1}^{2}+\rho_{2}^{2}-\rho_{1} \rho_{2}}{a}
$$

in $u=v=w=0$, we have

$$
\begin{equation*}
\rho_{1}^{4} c_{33}+\rho_{2}^{4} c_{44}=\frac{\rho_{1}^{2}+\rho_{2}^{2}-\rho_{1} \rho_{2}}{a} \tag{3.11}
\end{equation*}
$$

Since $c_{33}=c_{77}$ and $c_{44}=c_{88}$, from (3.10) and (3.11), one obtains

$$
c_{33}=c_{77}=\frac{1}{a \rho_{1}\left(\rho_{1}+\rho_{2}\right)} \quad \text { and } \quad c_{44}=c_{88}=\frac{1}{a \rho_{2}\left(\rho_{1}+\rho_{2}\right)} .
$$

We have just proved that

$$
c_{3} \perp c_{4} \perp c_{7} \perp c_{8} \perp c_{3}
$$

and

$$
\left|c_{3}\right|^{2}=\left|c_{7}\right|^{2}=\frac{1}{a \rho_{1}\left(\rho_{1}+\rho_{2}\right)}, \quad\left|c_{4}\right|^{2}=\left|c_{8}\right|^{2}=\frac{1}{a \rho_{2}\left(\rho_{1}+\rho_{2}\right)},
$$

where $c_{i} \perp c_{j}$ means $\left\langle c_{i}, c_{j}\right\rangle=0$ and $\left|c_{i}\right|^{2}=\left\langle c_{i}, c_{i}\right\rangle$.
In order to calculate $c_{2 j}$ and $c_{6 j}$, for $j \in\{2,3,4,6,7,8\}$, we shall take first $\lambda u=(\gamma-\alpha) v$ and $w=0$ in the expression of x_{v} and, from $\left\langle x_{v}, x_{v}\right\rangle=\frac{1}{a}$, we obtain

$$
\begin{aligned}
f_{1}(v)= & \left\langle x_{v}, x_{v}\right\rangle \\
= & (\gamma-\alpha)^{2} c_{66}+\gamma^{2}\left(c_{33}+c_{44}\right)+2 \gamma(\gamma-\alpha) \sin ((2 \gamma-\alpha) v)\left(c_{36}+c_{46}\right) \\
& -2 \gamma(\gamma-\alpha) \cos ((2 \gamma-\alpha) v)\left(c_{67}+c_{68}\right) \\
= & \frac{1}{a}
\end{aligned}
$$

As $f_{1}^{\prime}(0)=0$ and $f_{1}^{\prime}\left(\frac{\pi}{2(2 \gamma-\alpha)}\right)=0$ it follows

$$
\begin{equation*}
c_{36}+c_{46}=0 \quad \text { and } \quad c_{67}+c_{68}=0 \tag{3.12}
\end{equation*}
$$

Next, consider $\lambda u=(\gamma-\alpha) v+\frac{\pi}{2}$ and $w=0$ in the expression of x_{v} and, in the same way as above, we get

$$
\begin{equation*}
c_{23}+c_{24}=0 \quad \text { and } \quad c_{27}+c_{28}=0 . \tag{3.13}
\end{equation*}
$$

Now, consider

$$
\begin{aligned}
f_{2}(w)= & \left\langle x_{v}(0,0, w), x_{v}(0,0, w)\right\rangle \\
= & (\gamma-\alpha)^{2} c_{66}+\gamma^{2}\left(c_{33}+c_{88}\right) \\
& +2 \gamma(\gamma-\alpha) \sin \left(\rho_{1} w\right) c_{36}-2 \gamma(\gamma-\alpha) \cos \left(\rho_{1} w\right) c_{67} \\
& -2 \gamma(\gamma-\alpha) \sin \left(\rho_{2} w\right) c_{46}-2 \gamma(\gamma-\alpha) \cos \left(\rho_{2} w\right) c_{68} \\
= & \frac{1}{a}
\end{aligned}
$$

and, from $f_{2}^{\prime}(0)=0$ and $f_{2}^{\prime \prime}(0)=0$, we have

$$
\rho_{1} c_{36}-\rho_{2} c_{46}=0 \quad \text { and } \quad \rho_{1}^{2} c_{67}-\rho_{2}^{2} c_{68}=0
$$

which together with (3.12) give $c_{36}=c_{46}=c_{67}=c_{68}=0$. Replacing in $f_{1}(v)=\frac{1}{a}$ we also obtain

$$
c_{66}=\frac{1}{a(\gamma-\alpha)(2 \gamma-\alpha)}
$$

Next, using $\left\langle x_{v}\left(\frac{\pi}{2 \lambda}, 0,0\right), x_{v}\left(\frac{\pi}{2 \lambda}, 0,0\right)\right\rangle=\frac{1}{a}$, it results

$$
c_{22}=\frac{1}{a(\gamma-\alpha)(2 \gamma-\alpha)}
$$

and then, from (3.13), $\left\langle x_{v}\left(\frac{\pi}{2 \lambda}, 0,0\right), x_{w}\left(\frac{\pi}{2 \lambda}, 0,0\right)\right\rangle=0$ and $\left\langle x_{v}(0,0,0), x_{w}(0,0,0)\right\rangle=$ 0 , we have $c_{23}=c_{24}=c_{27}=c_{28}=0$.
With all values of $c_{i j}$ obtained so far in mind, from $\left\langle x_{v}\left(\frac{\pi}{4 \lambda}, 0,0\right), x_{v}\left(\frac{\pi}{4 \lambda}, 0,0\right)\right\rangle=\frac{1}{a}$, we obtain $c_{26}=0$ and thus

$$
c_{2} \perp c_{3} \perp c_{4} \perp c_{6} \perp c_{7} \perp c_{8} \perp c_{2}
$$

We have also proved that

$$
\left|c_{2}\right|^{2}=\left|c_{6}\right|^{2}=\frac{1}{a(\gamma-\alpha)(2 \gamma-\alpha)}
$$

Now we only have to calculate $c_{1 j}$ and $c_{5 j}$, for $j=\{1,2, \ldots, 8\}$. In order to do this, we consider

$$
\begin{aligned}
f_{3}(w)= & \langle x(0,0, w), x(0,0, w)\rangle \\
= & c_{11}+c_{22}+2 c_{12}+c_{33}+c_{44}+2 \cos \left(\rho_{1} w\right) c_{13}+2 \cos \left(\rho_{2} w\right) c_{14} \\
& +2 \sin \left(\rho_{1} w\right) c_{17}-2 \sin \left(\rho_{2} w\right) c_{18} \\
= & 1
\end{aligned}
$$

and, since $f_{3}^{\prime}(0)=0$ and $f_{3}^{\prime \prime}(0)=0$, we have

$$
\rho_{1} c_{17}-\rho_{2} c_{18}=0 \quad \text { and } \quad \rho_{1}^{3} c_{17}-\rho_{2}^{3} c_{18}=0,
$$

which give $c_{17}=c_{18}=0$. Replacing in $f_{3}^{\prime}(w)=0$ we also obtain $c_{13}=c_{14}=0$. Next, as $\left\langle x(0,0,0), x_{v}(0,0,0)\right\rangle=0$ and

$$
\left\langle x(0,0,0), x_{v v}(0,0,0)\right\rangle=-\left\langle x_{v}(0,0,0), x_{v}(0,0,0)\right\rangle=-\frac{1}{a}
$$

we easily get $c_{16}=0$ and $c_{12}=0$. Thus, from $f_{3}(w)=1$, it results

$$
c_{11}+c_{22}+c_{33}+c_{44}=1
$$

which means that

$$
c_{11}=\frac{\lambda^{2}}{\lambda^{2}+\frac{1}{a}}
$$

Now, consider

$$
\begin{aligned}
f_{4}(w)= & \left\langle x_{u}(0,0, w), x_{u}(0,0, w)\right\rangle \\
= & \frac{1}{a^{2} \lambda^{2}} c_{11}+\lambda^{2}\left(c_{66}+c_{33}+c_{44}\right)+\frac{2}{a} c_{56}-\frac{2}{a} \sin \left(\rho_{1} w\right) c_{35} \\
& +\frac{2}{a} \sin \left(\rho_{2} w\right) c_{45}+\frac{2}{a} \cos \left(\rho_{1} w\right) c_{57}+\frac{2}{a} \cos \left(\rho_{2} w\right) c_{58} \\
= & \frac{1}{a}
\end{aligned}
$$

and, from $f_{4}^{\prime}(0)=0, f_{4}^{\prime \prime}(0)=0, f_{4}^{\prime \prime \prime}(0)=0$ and $f_{4}^{(i v)}(0)=0$, we have the following equations

$$
\begin{cases}\rho_{1} c_{35}+\rho_{2} c_{45}=0, & \rho_{1}^{2} c_{57}+\rho_{2}^{2} c_{58}=0 \\ \rho_{1}^{3} c_{35}+\rho_{2}^{3} c_{45}=0, & \rho_{1}^{4} c_{57}+\rho_{2}^{4} c_{58}=0\end{cases}
$$

with solutions $c_{35}=c_{45}=c_{57}=c_{58}=0$.
From

$$
\left\langle x_{u}(0,0,0), x_{v}(0,0,0)\right\rangle=0,\left\langle x_{u}(0,0,0), x_{v v}(0,0,0)\right\rangle=0,\left\langle x(0,0,0), x_{u}(0,0,0)\right\rangle=0
$$

it results $c_{56}=c_{25}=c_{15}=0$ and, from $f_{4}(w)=\frac{1}{a}$, we have

$$
c_{55}=\frac{\lambda^{2}}{\lambda^{2}+\frac{1}{a}} .
$$

So far we proved that $c_{i} \perp c_{j}$ for every $i, j \in\{1,2, \ldots, 8\}$ and $\left|c_{1}\right|^{2}=\left|c_{5}\right|^{2}=$ $\frac{\lambda^{2}}{\lambda^{2}+\frac{1}{a}},\left|c_{2}\right|^{2}=\left|c_{6}\right|^{2}=\frac{1}{a(\gamma-\alpha)(2 \gamma-\alpha)},\left|c_{3}\right|^{2}=\left|c_{7}\right|^{2}=\frac{1}{a \rho_{1}\left(\rho_{1}+\rho_{2}\right)},\left|c_{4}\right|^{2}=\left|c_{8}\right|^{2}=$ $\frac{1}{a \rho_{2}\left(\rho_{1}+\rho_{2}\right)}$.

Finally, imposing M to be an integral submanifold we conclude that its position vector in \mathbb{R}^{8} is given by equation (3.6).

Remark 3.2. Using complex coordinates, (3.6) can be rewritten as

$$
\begin{aligned}
x(u, v, w) & =\frac{\lambda}{\sqrt{\lambda^{2}+\frac{1}{a}}} \exp \left(\mathrm{i}\left(\frac{1}{a \lambda} u\right)\right) E_{1}+\frac{1}{\sqrt{a(\gamma-\alpha)(2 \gamma-\alpha)}} \exp (-\mathrm{i}(\lambda u-(\gamma-\alpha) v)) E_{2} \\
& +\frac{1}{\sqrt{a \rho_{1}\left(\rho_{1}+\rho_{2}\right)}} \exp \left(-\mathrm{i}\left(\lambda u+\gamma v+\rho_{1} w\right)\right) E_{3} \\
& +\frac{1}{\sqrt{a \rho_{2}\left(\rho_{1}+\rho_{2}\right)}} \exp \left(-\mathrm{i}\left(\lambda u+\gamma v-\rho_{2} w\right)\right) E_{4},
\end{aligned}
$$

where $\left\{E_{i}\right\}_{i=1}^{4}$ is an orthonormal basis of \mathbb{C}^{4} with respect to the usual Hermitian inner product.

References

[1] C. Baikoussis, D.E. Blair. Integral surfaces of Sasakian space forms, J. Geom. 43 (1992), 30-40. 33
[2] C. Baikoussis, D.E. Blair. On Legendre curves in contact 3-manifolds, Geom. Dedicata 49 (1994), 135-142. "33"
[3] C. Baikoussis, D.E. Blair. On the geometry of 7-sphere, Results Math. 27 (1995), 5-16. 33
[4] C. Baikoussis, D.E. Blair, T. Koufogiorgos. Integral submanifolds of Sasakian space forms \bar{M}^{7}, Results Math. 27 (1995), 207-226. 33, 35, 36, 37, 38, 39
[5] D.E. Blair. Riemannian Geometry of Contact and Symplectic Manifolds, Birkhäuser Boston, Progress in Mathematics, 203, 2002. 33, 34, 35
[6] F. Dillen, L. Vrancken. C-totally real submanifolds of $\mathbb{S}^{7}(1)$ with non-negative sectional curvature, Math. J. Okayama Univ. 31 (1989), 227-242. 33, 36
[7] D. Van Lindt, P. Verheyen, L. Verstraelen. Minimal submanifolds in Sasakian space forms, J. Geom. 27 (1986), 180-187.
[8] L. Verstraelen, L. Vrancken. Pinching theorems for \mathcal{C}-totally real submanifolds of Sasakian space forms, J. Geom. 33 (1988), 172-184. "33" 33, 35
[9] L. Vrancken. Locally symmetric C-totally real submanifolds of $\mathbb{S}^{7}(1)$, Kyungpook Math. J. 29 (1988), 167-186. 33
[10] S. Tanno. Sasakian manifolds with constant φ-holomorphic sectional curvature, Tôhoku Math. J. 21 (1969), 501-507. 33, 34
D. Fetcu

Department of Mathematics
"Gh. Asachi" Technical University of Iasi
Bd. Carol I no. 11
700506 Iasi, Romania
dfetcu@math.tuiasi.ro
C. Oniciuc

Faculty of Mathematics
"Al.I. Cuza" University of Iasi
Bd. Carol I no. 11
700506 Iasi, Romania
oniciucc@uaic.ro

Recibido: 31 de agosto de 2009
Aceptado: 18 de septiembre de 2010

[^0]: 2000 Mathematics Subject Classification. 53C15.
 Key words and phrases. Integral C-parallel submanifolds, Sasakian space forms.
 The second author was supported by PCE Grant PN II-2228 (502/2009), Romania.

