Skip to main content
Log in

Macdonald–Koornwinder moments and the two-species exclusion process

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

Introduced in the late 1960’s (Macdonald et al. in Biopolymers 6:1–25, 1968; Spitzer in Adv Math 5:246–290, 1970), the asymmetric exclusion process (ASEP) is an important model from statistical mechanics which describes a system of interacting particles hopping left and right on a one-dimensional lattice with open boundaries. It has been known for awhile that there is a tight connection between the partition function of the ASEP and moments of Askey–Wilson polynomials (Uchiyama et al. in J Phys A 37(18):4985–5002, 2004; Corteel and Williams in Duke Math J 159(3):385–415, 2011; Corteel et al. in Trans Am Math Soc 364(11):6009–6037, 2012), a family of orthogonal polynomials which are at the top of the hierarchy of classical orthogonal polynomials in one variable. On the other hand, Askey–Wilson polynomials can be viewed as a specialization of the multivariate Macdonald–Koornwinder polynomials (also known as Koornwinder polynomials), which in turn give rise to the Macdonald polynomials associated to any classical root system via a limit or specialization (van Diejen in Compos Math 95(2):183–233, 1995). In light of the fact that Koornwinder polynomials generalize the Askey–Wilson polynomials, it is natural to ask whether one can find a particle model whose partition function is related to Koornwinder polynomials. In this article we answer this question affirmatively, by showing that Koornwinder moments at \(q=t\) are closely connected to the partition function for the two-species exclusion process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andréief, M.: Note sur une relation entre les intégrales définies des produits des fonctions. Mém. Soc. Sci. Bordx. 2, 1–14 (1883)

    MATH  Google Scholar 

  2. Askey, R., Wilson, J.: Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Mem. Am. Math. Soc. 54(319), iv+55 (1985)

    MathSciNet  MATH  Google Scholar 

  3. Borodin, A., Corwin, I.: Macdonald processes. Probab. Theory Relat. Fields 158(1–2), 225–400 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cantini, L.: Asymmetric simple exclusion process with open boundaries and Koornwinder polynomials. Ann. Henri Poincaré 18(4), 1121–1151 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Corteel, S., Mandelshtam, O., Williams, L.: Combinatorics of the two-species ASEP and Koornwinder moments. Adv Math 321, 160–204 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Corteel, S., Stanley, R., Stanton, D., Williams, L.: Formulae for Askey–Wilson moments and enumeration of staircase tableaux. Trans. Am. Math. Soc. 364(11), 6009–6037 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Corteel, S., Williams, L.K.: Tableaux combinatorics for the asymmetric exclusion process and Askey–Wilson polynomials. Duke Math. J. 159(3), 385–415 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Corteel, S., Williams, L.K.: Erratum to "Tableaux combinatorics for the asymmetric exclusion process and Askey–Wilson polynomials" [mr2831874]. Duke Math. J. 162(15), 2987–2996 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. de Bruijn, N.G.: On some multiple integrals involving determinants. J. Indian Math. Soc. (N.S.), 19:133–151 (1956), 1955

  10. Derrida, B., Evans, M.R., Hakim, V., Pasquier, V.: Exact solution of a \(1\)D asymmetric exclusion model using a matrix formulation. J. Phys. A 26(7), 1493–1517 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gasper, G., Rahman, M.: Basic Hypergeometric Series, Vol 96 of Encyclopedia of Mathematics and its Applications, 2nd edn. Cambridge University Press, Cambridge (2004). (With a foreword by Richard Askey)

    Google Scholar 

  12. Gessel, I., Viennot, G.: Binomial determinants, paths, and hook length formulae. Adv. Math. 58(3), 300–321 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. Haiman, M: Personal communication (January 2007)

  14. Koekoek, R., Lesky, P.A., Swarttouw, R.F.: Hypergeometric orthogonal polynomials and their \(q\)-analogues Springer Monographs in Mathematics. Springer, Berlin (2010). (With a foreword by Tom H. Koornwinder)

    Book  MATH  Google Scholar 

  15. Karlin, S., McGregor, J.: Coincidence probabilities. Pac. J. Math. 9, 1141–1164 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  16. Karlin, S., McGregor, J.: Coincidence properties of birth and death processes. Pac. J. Math. 9, 1109–1140 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  17. Koornwinder, T.H.: Askey-Wilson polynomials for root systems of type \(BC\). In: Richards, D. St. (ed.) Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications (Tampa, FL, 1991), vol. 138 of Contemporary Mathematics, pp. 189–204. American Mathematical Society, Providence (1992).

  18. Krattenthaler, C.: Advanced determinant calculus. Sém. Lothar. Combin., 42:Art. B42q, 67 pp. (electronic), (1999). The Andrews Festschrift (Maratea, 1998)

  19. Lindström, B.: On the vector representations of induced matroids. Bull. Lond. Math. Soc. 5, 85–90 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  20. Macdonald, I.G.: Symmetric Functions and Hall polynomials. Oxford Mathematical Monographs, 2nd edn. The Clarendon Press, Oxford University Press, New York (1995). (With contributions by A. Zelevinsky, Oxford Science Publications)

  21. Macdonald, J., Gibbs, J., Pipkin, A.: Kinetics of biopolymerization on nucleic acid templates. Biopolymers 6, 1–25 (1968)

    Article  Google Scholar 

  22. Nakagawa, J., Noumi, M., Shirakawa, M., Yamada, Y.: Tableau representation for Macdonald’s ninth variation of Schur functions. In: Kirillov, A.N., Liskova, N. (eds.) Physics and Combinatorics, 2000 (Nagoya), pp. 180–195. World Science Publisher, River Edge (2001)

    Google Scholar 

  23. Rains, E.: Personal communication (June 2013)

  24. Spitzer, F.: Interaction of Markov processes. Adv. Math. 5, 246–290 (1970). 1970

    Article  MathSciNet  MATH  Google Scholar 

  25. Stanton, D.: Personal communication (January 2016)

  26. Uchiyama, M.: Two-species asymmetric simple exclusion process with open boundaries. Chaos Solitons Fractals 35(2), 398–407 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Uchiyama, M., Sasamoto, T., Wadati, M.: Asymmetric simple exclusion process with open boundaries and Askey–Wilson polynomials. J. Phys. A 37(18), 4985–5002 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. van Diejen, J.F.: Commuting difference operators with polynomial eigenfunctions. Compos. Math. 95(2), 183–233 (1995)

    MathSciNet  MATH  Google Scholar 

  29. Viennot, G.: Une théorie combinatoire des polynomes orthogonaux. Lecture Notes LACIM, UQAM, Montréal, 219 pp (1984)

  30. Viennot, G.: A combinatorial theory for general orthogonal polynomials with extensions and applications. In: Brezinski, C., Draux, A., Magnus, A.P., Maroni, P., Ronveaux, A. (eds.) Orthogonal Polynomials and Applications (Bar-le-Duc, 1984), vol. 1171 of Lecture Notes in Mathematics, pp. 139–157. Springer, Berlin (1985).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauren K. Williams.

Additional information

SC was partially funded by the “Combinatoire à Paris” Projet Emergences 2013–2017 and by “ALEA Sorbonne” Projet IDEX USPC. LW was partially supported by the Fondation Sciences Mathématiques de Paris, the Simons foundation, a Rose-Hills Investigator award, and an NSF CAREER award. Both authors are grateful for the comments of the anonymous referees, and the support of the France-Berkeley fund, and would like to acknowledge the hospitality of LIAFA, where part of this work was carried out.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corteel, S., Williams, L.K. Macdonald–Koornwinder moments and the two-species exclusion process. Sel. Math. New Ser. 24, 2275–2317 (2018). https://doi.org/10.1007/s00029-017-0375-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-017-0375-x

Keywords

Mathematics Subject Classification

Navigation