Skip to main content
Log in

Geometry of Hessenberg varieties with applications to Newton–Okounkov bodies

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

In this paper, we study the geometry of various Hessenberg varieties in type A, as well as families thereof. Our main results are as follows. We find explicit and computationally convenient generators for the local defining ideals of indecomposable regular nilpotent Hessenberg varieties, allowing us to conclude that all regular nilpotent Hessenberg varieties are local complete intersections. We also show that certain flat families of Hessenberg varieties, whose generic fibers are regular semisimple Hessenberg varieties and whose special fiber is a regular nilpotent Hessenberg variety, have reduced fibres. In the second half of the paper we present several applications of these results. First, we construct certain flags of subvarieties of a regular nilpotent Hessenberg variety, obtained by intersecting with Schubert varieties, with well-behaved geometric properties. Second, we give a computationally effective formula for the degree of a regular nilpotent Hessenberg variety with respect to a Plücker embedding. Third, we explicitly compute some Newton–Okounkov bodies of the two-dimensional Peterson variety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abe, H., Billey, S.: Consequences of the Lakshmibai–Sandhya theorem: the ubiquity of permutation patterns in Schubert calculus and related geometry. Adv. Stud. Pure Math. 71, 1–52 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Abe, H., Crooks, P.: Hessenberg varieties for the minimal nilpotent orbit, arXiv:1510.02436. (To appear in Pure and Applied Mathematics Quarterly)

  3. Abe, H., Harada, M., Horiguchi, T., Masuda, M.: The cohomology rings of regular nilpotent Hessenberg varieties in Lie type A. Int. Math. Res. Not. https://doi.org/10.1093/imrn/rnx275

  4. Abe, T., Horiguchi, T., Masuda, M., Murai, S., Sato, T.: Hessenberg varieties and hyperplane arrangements. arXiv:1611.00269

  5. Anderson, D., Tymoczko, J.: Schubert polynomials and classes of Hessenberg varieties. J. Algebra 323(10), 2605–2623 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Atiyah, M.F., Bott, R.: The moment map and equivariant cohomology. Topology 23(1), 1–28 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  7. Atiyah, M.F., Macdonald, I.G.: Introduction to Commutative Algebra. Addison-Wesley Publishing Co., Reading, Mass, London-Don Mills (1969)

    MATH  Google Scholar 

  8. Berline, N., Vergne, M.: Classes caractéristiques équivariantes. Formule de localisation en cohomologie équivariante. C. R. Acad. Sci. Paris Sér. I Math. 295(9), 539–541 (1982)

    MathSciNet  MATH  Google Scholar 

  9. Brion, M., Carrell, J.: The equivariant cohomology ring of regular varieties. Mich. Math. J. 52(1), 189–203 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brosnan, P., Chow, T.: Unit interval orders and the dot action on the cohomology of regular semisimple Hessenberg varieties, arXiv:1511.00773. (To appear in Advances in Mathematics)

  11. DeDieu, L.: Newton-Okounkov bodies of Bott-Samelson & Peterson varieties. PhD thesis, McMaster University (2016)

  12. De Mari, F.: On the topology of Hessenberg varieties of a matrix. Ph.D. thesis, Washington University, St. Louis, Missouri (1987)

  13. De Mari, F., Procesi, C., Shayman, M.A.: Hessenberg varieties. Trans. Am. Math. Soc. 332(2), 529–534 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. De Mari, F., Shayman, M.: Generalized Eulerian numbers and the topology of the Hessenberg variety of a matrix. Acta Appl. Math. 12(3), 213–235 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  15. Drellich, E.J.: Combinatorics of Equivariant Cohomology: Flags and Regular Nilpotent Hessenberg Varieties. PhD thesis, University of Massachusetts, Amherst (2015)

  16. Eisenbud, D.: Commutative Algebra. With a View Toward Algebraic Geometry. Graduate Texts in Mathematics, vol. 150. Springer, New York (1995)

    MATH  Google Scholar 

  17. Fulman, J.: Descent identities, Hessenberg varieties, and the Weil Conjectures. J. Comb. Theory Ser. A 87(2), 390–397 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fulton, W.: Flags, Schubert polynomials, degeneracy loci, and determinantal formulas. Duke Math. J. 65(3), 381–420 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fulton, W., Tableaux, Y.: With Applications to Representation Theory and Geometry. London Mathematical Society Student Texts, vol. 35. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  20. Fulton, W.: Intersection Theory. Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics, vol. 2, 2nd edn. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  21. Fung, F.Y.C.: On the topology of components of some Springer fibers and their relation to Kazhdan–Lusztig theory. Adv. Math. 178(2), 244–276 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kuronya, A., Lozovanu, V., Maclean, C.: Convex bodies appearing as Okounkov bodies of divisors. Adv. Math. 229(5), 2622–2639 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Grayson, D.R., Stillman, M.E.: Macaulay2, a software system for research in algebraic geometry. http://www.math.uiuc.edu/Macaulay2/

  24. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Pure and Applied Mathematics. Wiley, New York (1978)

    MATH  Google Scholar 

  25. Guay-Paquet, M.: A second proof of the Shareshian–Wachs conjecture, by way of a new Hopf algebra. arXiv:1601.05498

  26. Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 52. Springer, New York (1977)

    Book  Google Scholar 

  27. Insko, E.A.: Equivariant cohomology and local invariants of Hessenberg varieties. Thesis (Ph.D.), The University of Iowa (2012)

  28. Insko, E.A., Yong, A.: Patch ideals and Peterson varieties. Transform. Groups 17(4), 1011–1036 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kaveh, K.: Crystal bases and Newton–Okounkov bodies. Duke Math. J. 164(13), 2461–2506 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kaveh, K., Khovanskii, A.: Newton–Okounkov bodies, semigroups of integral points, graded algebras and intersection theory. Ann. of Math. (2) 176(2), 925–978 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kersey, S.: Invertibility of Submatrices of Pascal’s Matrix and Birkhoff Interpolation, J. Math. Sci. Adv. Appl. https://doi.org/10.18642/jmsaa_7100121709

  32. Kostant, B.: Flag manifold quantum cohomology, the Toda lattice, and the representation with highest weight \(\rho \). Selecta Math. (N.S.) 2(1), 43–91 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lazarsfeld, R., Mustaţă, M.: Convex bodies associated to linear series. Ann. Sci. Éc. Norm. Supér. (4) 42(5), 783–835 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Matsumura, H.: Commutative ring Theory. Cambridge Studies in Advanced Mathematics, vol. 8, 2nd edn. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  35. Mbirika, A.: A Hessenberg generalization of the Garsia-Procesi basis for the cohomology ring of Springer varieties. Electron. J. Combin. 17(1), 153 (2010). (Research Paper)

    MathSciNet  MATH  Google Scholar 

  36. Nishinou, T., Nohara, Y., Ueda, K.: Toric degenerations of Gelfand–Cetlin systems and potential functions. Adv. Math. 224(2), 648–706 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Okounkov, A.: Brunn-Minkowski inequality for multiplicities. Invent. Math. 125(3), 405–411 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  38. Okounkov, A.: Why would multiplicities be log-concave? The orbit method in geometry and physics (Marseille, 2000), 329–347. Progr. Math., 213, Birkhäuser Boston, Boston, MA (2003)

  39. Postnikov, A.: Permutohedra, associahedra, and beyond. Int. Math. Res. Not. IMRN 6, 1026–1106 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Precup, M.: Affine pavings of Hessenberg varieties for semisimple groups. Sel. Math. New Ser. 19, 903–922 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Precup, M.: The connectedness of Hessenberg varieties. J. Algebra 437, 34–43 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Rietsch, K.: Totally positive Toeplitz matrices and quantum cohomology of partial flag varieties. J. Am. Math. Soc. 16(2), 363–392 (2003). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  43. Shafarevich, I.R., Basic algebraic geometry. 1. Varieties in projective space. Second edition. Translated from the 1988 Russian edition and with notes by Miles Reid, Springer, Berlin (1994)

  44. Shareshian, J., Wachs, M.L.: Chromatic quasisymmetric functions and Hessenberg varieties. Configuration spaces, 433–460, CRM Series, 14 Ed. Norm., Pisa (2012)

  45. Springer, T.A.: Trigonometric sums, Green functions of finite groups and representations of Weyl groups. Invent. Math. 36, 173–207 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  46. Tymoczko, J.S.: Linear conditions imposed on flag varieties. Am. J. Math. 128(6), 1587–1604 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiraku Abe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abe, H., DeDieu, L., Galetto, F. et al. Geometry of Hessenberg varieties with applications to Newton–Okounkov bodies. Sel. Math. New Ser. 24, 2129–2163 (2018). https://doi.org/10.1007/s00029-018-0405-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-018-0405-3

Keywords

Mathematics Subject Classification

Navigation