Skip to main content
Log in

Cohomological orientifold Donaldson–Thomas invariants as Chow groups

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We establish a geometric interpretation of orientifold Donaldson–Thomas invariants of \(\sigma \)-symmetric quivers with involution. More precisely, we prove that the cohomological orientifold Donaldson–Thomas invariant is isomorphic to the rational Chow group of the moduli space of \(\sigma \)-stable self-dual quiver representations. As an application we prove that the Chow Betti numbers of moduli spaces of stable m-tuples in classical Lie algebras can be computed numerically. We also prove a cohomological wall-crossing formula relating semistable Hall modules for different stabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atiyah, M., Bott, R.: The Yang-Mills equations over Riemann surfaces. Philos. Trans. Roy. Soc. Lond. Ser. A 308(1505), 523–615 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brion, M.: Equivariant cohomology and equivariant intersection theory. In: Representation theories and algebraic geometry (Montreal, PQ, 1997), volume 514 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pp. 1–37. Kluwer Acad. Publ., Dordrecht, 1998. Notes by Alvaro Rittatore

  3. Brion, M., Joshua, R.: Notions of purity and the cohomology of quiver moduli. Int. J. Math. 23(9), 1250097, 30 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brown Jr., E.: The cohomology of \(B{\rm SO}_{n}\) and \(B{\rm O}_{n}\) with integer coefficients. Proc. Am. Math. Soc. 85(2), 283–288 (1982)

    Google Scholar 

  5. Chen, Z.: Geometric construction of generators of CoHA of doubled quiver. C. R. Math. Acad. Sci. Paris 352(12), 1039–1044 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Davison, B., Meinhardt, S.: Cohomological Donaldson–Thomas theory of a quiver with potential and quantum enveloping algebras. arXiv:1601.02479 (2016)

  7. Denef, F., Esole, M., Padi, M.: Orientiholes. J. High Energy Phys. (3), 045, 44 (2010)

  8. Derksen, H., Weyman, J.: Generalized quivers associated to reductive groups. Colloq. Math. 94(2), 151–173 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dhillon, A., Young, M.: The motive of the classifying stack of the orthogonal group. Mich. Math. J. 65(1), 189–197 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Edidin, D., Graham, W.: Characteristic classes in the Chow ring. J. Algebr. Geom. 6(3), 431–443 (1997)

    MathSciNet  MATH  Google Scholar 

  11. Edidin, D., Graham, W.: Equivariant intersection theory. Invent. Math. 131(3), 595–634 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Efimov, A.: Cohomological Hall algebra of a symmetric quiver. Compos. Math. 148, 1133–1146 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Franzen, H.: On the semi-stable CoHa and its modules arising from smooth models. arXiv:1502.04327 (2015)

  14. Franzen, H.: On cohomology rings of non-commutative Hilbert schemes and CoHa-modules. Math. Res. Lett. 23(3), 804–840 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Franzen, H., Reineke, M.: Semi-stable Chow-Hall algebras of quivers and quantized Donaldson–Thomas invariants. arXiv:1512.03748 (2015)

  16. Harada, M., Wilkin, G.: Morse theory of the moment map for representations of quivers. Geom. Dedicata 150, 307–353 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hausel, T., Letellier, E., Rodriguez-Villegas, F.: Positivity for Kac polynomials and DT-invariants of quivers. Ann. of Math. (2) 177(3), 1147–1168 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. King, A.: Moduli of representations of finite-dimensional algebras. Quart. J. Math. Oxford Ser. (2) 45(180), 515–530 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kirwan, F.: Cohomology of Quotients in Symplectic and Algebraic Geometry, volume 31 of Mathematical Notes. Princeton University Press, Princeton, NJ (1984)

    Google Scholar 

  20. Kontsevich, M., Soibelman, Y.: Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson–Thomas invariants. Commun. Number Theory Phys. 5(2), 231–352 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Laumon, G., Rapoport, M.: The Langlands lemma and the Betti numbers of stacks of \(G\)-bundles on a curve. Int. J. Math. 7(1), 29–45 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Letellier, E.: DT-invariants of quivers and the Steinberg character of \({\rm GL}_n\). Int. Math. Res. Not. IMRN 22, 11887–11908 (2015)

    MATH  Google Scholar 

  23. Meinhardt, S., Reineke, M.: Donaldson-Thomas invariants versus intersection cohomology of quiver moduli. arXiv:1411.4062 (2014)

  24. Pandharipande, R.: Equivariant Chow rings of \({\rm O}(k), {\rm SO}(2k+1)\), and \({\rm SO}(4)\). J. Reine Angew. Math. 496, 131–148 (1998)

    MathSciNet  MATH  Google Scholar 

  25. Reineke, M.: The Harder-Narasimhan system in quantum groups and cohomology of quiver moduli. Invent. Math. 152(2), 349–368 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Reineke, M.: Degenerate cohomological Hall algebra and quantized Donaldson–Thomas invariants for \(m\)-loop quivers. Doc. Math. 17, 1–22 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Totaro, B.: The Chow ring of a classifying space. In: Algebraic \(K\)-theory (Seattle, WA, 1997), volume 67 of Proc. Sympos. Pure Math., pp. 249–281. Am. Math. Soc., Providence, RI (1999)

  28. Young, M.: Self-dual quiver moduli and orientifold Donaldson–Thomas invariants. Commun. Number Theory Phys. 9(3), 437–475 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Young, M.: Representations of cohomological Hall algebras and Donaldson–Thomas theory with classical structure groups. arXiv:1603.05401 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew B. Young.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franzen, H., Young, M.B. Cohomological orientifold Donaldson–Thomas invariants as Chow groups. Sel. Math. New Ser. 24, 2035–2061 (2018). https://doi.org/10.1007/s00029-018-0415-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-018-0415-1

Keywords

Mathematics Subject Classification

Navigation