Skip to main content
Log in

Polymorphism clones of homogeneous structures: generating sets, Sierpiński rank, cofinality and the Bergman property

  • Published:
Algebra universalis Aims and scope Submit manuscript

Abstract

In this paper, motivated by classical results by Sierpiński, Arnold and Kolmogorov, we derive sufficient conditions for polymorphism clones of homogeneous structures to have a generating set of bounded arity. We use our findings in order to describe a class of homogeneous structures whose polymorphism clones have a finite Sierpiński rank, uncountable cofinality, and the Bergman property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, V.I.: On functions of three variables. Dokl. Akad. Nauk SSSR 114, 679–681 (1957)

    MathSciNet  Google Scholar 

  2. Bergman, G.M.: Generating infinite symmetric groups. Bull. Lond. Math. Soc. 38(3), 429–440 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cameron, P.J., Lockett, D.C.: Posets, homomorphisms and homogeneity. Discrete Math. 310(3), 604–613 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cameron, P.J., Nešetřil, J.: Homomorphism-homogeneous relational structures. Comb. Probab. Comput. 15(1–2), 91–103 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. de Cornulier, Y.: Strongly bounded groups and infinite powers of finite groups. Commun. Algebra 34(7), 2337–2345 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dolinka, I.: A characterization of retracts in certain Fraïssé limits. Math. Logic Q. 58(1–2), 46–54 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dolinka, I.: The Bergman property for endomorphism monoids of some Fraïssé limits. Forum Math. 26(2), 357–376 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Droste, M., Göbel, R.: Uncountable cofinalities of permutation groups. J. Lond. Math. Soc. II. Ser. 71(2), 335–344 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Droste, M., Holland, W.C.: Generating automorphism groups of chains. Forum Math. 17(4), 699–710 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Droste, M., Truss, J.K.: Uncountable cofinalities of automorphism groups of linear and partial orders. Algebra Universalis 62(1), 75–90 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Droste, M., Truss, J.K.: The uncountable cofinality of the automorphism group of the countable universal distributive lattice. Demonstr. Math. 44(3), 473–479 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Fraïssé, R.: Sur certaines relations qui généralisent l’ordre des nombres rationnels. C. R. Acad. Sci. Paris 237, 540–542 (1953)

    MathSciNet  MATH  Google Scholar 

  13. Goldstern, M.: A single binary function is enough. Contributions to General Algebra, pp. 35–37. Heyn, Klagenfurt (2012)

    Google Scholar 

  14. Gould, M., Morel, A.C., Tsinakis, C.: Cofinality of algebras. Algebra Universalis 22(2–3), 253–278 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hodges, W.: A Shorter Model Theory. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  16. Howie, J.M., Ruškuc, N., Higgins, P.M.: On relative ranks of full transformation semigroups. Commun. Algebra 26(3), 733–748 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kechris, A.S., Rosendal, C.: Turbulence, amalgamation, and generic automorphisms of homogeneous structures. Proc. Lond. Math. Soc. 94(2), 302–350 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Khelif, A.: À propos de la propriété de Bergman. C. R. Math. Acad. Sci. Paris 342(6), 377–380 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kolmogorov, A.N.: On the representation of continuous functions of several variables by superpositions of continuous functions of a smaller number of variables. Dokl. Akad. Nauk SSSR (N.S.) 108, 179–182 (1956)

    MathSciNet  MATH  Google Scholar 

  20. Koppelberg, B., McKenzie, R., Monk, J.D.: Cardinality and cofinality of homomorphs of products of Boolean algebras. Algebra Universalis 19(1), 38–44 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  21. Koppelberg, S.: Boolean algebras as unions of chains of subalgebras. Algebra Universalis 7(2), 195–203 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kubiś, W., Mašulović, D.: Katětov functors. Appl. Categorical Struct. 25(4), 569–602 (2016)

    Google Scholar 

  23. Macpherson, D.: A survey of homogeneous structures. Discrete Math. 311(15), 1599–1634 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Macpherson, H.D., Neumann, P.M.: Subgroups of infinite symmetric groups. J. Lond. Math. Soc. 42(1), 64–84 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  25. Maltcev, V., Mitchell, J.D., Ruškuc, N.: The Bergman property for semigroups. J. Lond. Math. Soc. 80(1), 212–232 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mašulović, D.: Homomorphism-homogeneous partially ordered sets. Order 24(4), 215–226 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mitchell, J.D., Péresse, Y.: Generating countable sets of surjective functions. Fund. Math. 213(1), 67–93 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mitchell, J.D., Péresse, Y.: Sierpiński rank for groups and semigroups. Wiad. Mat. 48(2), 209–215 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pech, C., Pech, M.: Fraïssé limits in comma categories. Applied Categorical Structures (2018). https://doi.org/10.1007/s10485-018-9519-1

  30. Péresse, Y.: Generating uncountable transformation semigroups. Ph.d. thesis, University of St Andrews (2009)

  31. Rosendal, C.: A topological version of the Bergman property. Forum Math. 21(2), 299–332 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sierpiński, W.: Sur les suites infinies de fonctions definies dans les ensembles quelconques. Fund. Math. 24, 209–212 (1935)

    Article  MATH  Google Scholar 

  33. Sierpiński, W.: Sur les fonctions de plusieurs variables. Fund. Math. 33, 169–173 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  34. Thomas, S.: Cofinalities of infinite permutation groups. In: Advances in algebra and model theory (Essen, 1994; Dresden, 1995), Algebra Logic Appl., vol. 9, pp. 101–120. Gordon and Breach, Amsterdam (1997)

  35. Tolstykh, V.: Infinite-dimensional general linear groups are groups of finite width. Sibirsk. Mat. Zh. 47(5), 1160–1166 (2006)

    MathSciNet  MATH  Google Scholar 

  36. Tolstykh, V.: On the Bergman property for the automorphism groups of relatively free groups. J. London Math. Soc. 73(3), 669–680 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maja Pech.

Additional information

This article is part of the topical collection “The 5th Novi Sad Algebraic Conference (NSAC 2017)” edited by P. Marković, M. Maróti and A. Tepavčević

The second author was supported by the Ministry of Education and Science of the Republic of Serbia through Grant no.174018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pech, C., Pech, M. Polymorphism clones of homogeneous structures: generating sets, Sierpiński rank, cofinality and the Bergman property. Algebra Univers. 79, 45 (2018). https://doi.org/10.1007/s00012-018-0527-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00012-018-0527-7

Mathematics Subject Classification

Keywords

Navigation