Skip to main content
Log in

Congruence structure of planar semimodular lattices: the General Swing Lemma

  • Published:
Algebra universalis Aims and scope Submit manuscript

Abstract

The Swing Lemma, proved by G. Grätzer in 2015, describes how a congruence spreads from a prime interval to another in a slim (having no \(\mathsf {M}_{3}\) sublattice), planar, semimodular lattice. We generalize the Swing Lemma to planar semimodular lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Czédli, G.: Representing homomorphisms of distributive lattices as restrictions of congruences of rectangular lattices. Algebra Universalis 67, 313–345 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Czédli, G.: Patch extensions and trajectory colorings of slim rectangular lattices. Algebra Universalis 72, 125–154 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Czédli, G.: A note on congruence lattices of slim semimodular lattices. Algebra Universalis 72, 225–230 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Czédli, G.: Diagrams and rectangular extensions of planar semimodular lattices. Algebra Universalis 77, 443–498 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Czédli, G., Grätzer, G.: Planar semimodular lattices: structure and diagrams. Chapter 3 in [33] (2014)

  6. Czédli, G., Makay, G.: Swing lattice game and a short proof of the swing lemma for planar semimodular lattices. Acta Sci. Math. (Szeged) 83, 13–29 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Czédli, G., Schmidt, E.T.: Slim semimodular lattices. I. A visual approach. Order 29, 481–497 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Czédli, G., Schmidt, E.T.: Slim semimodular lattices. II. A description by patchwork systems. Order 30, 689–721 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fried, E., Grätzer, G., Schmidt, E.T.: Multipasting of lattices. Algebra Universalis 30, 241–260 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Grätzer, G.: Equational classes of lattices. Duke Math. J. 33, 613–622 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  11. Grätzer, G.: Lattice Theory: Foundation. Birkhäuser, Basel (2011)

    Book  MATH  Google Scholar 

  12. Grätzer, G.: Planar Semimodular Lattices: Congruences. Chapter 4 in [33] (2014)

  13. Grätzer, G.: A technical lemma for congruences of finite lattices. Algebra Universalis 72, 53–55 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Grätzer, G.: Congruences in slim, planar, semimodular lattices: the Swing Lemma. Acta Sci. Math. (Szeged) 81, 381–397 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Grätzer, G.: Congruences and prime-perspectivities in finite lattices. Algebra Universalis 74, 351–359 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grätzer, G.: The Congruences of a Finite Lattice, A Proof-by-Picture Approach, 2nd edn. Birkhäuser, Basel (2016)

    Book  MATH  Google Scholar 

  17. Grätzer, G.: Congruences of fork extensions of lattices. Algebra Universalis 76, 139–154 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Grätzer, G.: Homomorphisms and principal congruences of bounded lattices. I. Isotone maps of principal congruences. Acta Sci. Math. (Szeged) 82, 353–360 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Grätzer, G.: Homomorphisms and principal congruences of bounded lattices. II. Sketching the proof for sublattices. (2017, preprint)

  20. Grätzer, G.: Homomorphisms and principal congruences of bounded lattices. III. The Independence Theorem. Algebra Universalis (2018)

  21. Grätzer, G.: On a result of Gábor Czédli concerning congruence lattices of planar semimodular lattices. Acta Sci. Math. (Szeged) 81, 25–32 (2015)

    Article  MathSciNet  Google Scholar 

  22. Grätzer, G.: Congruences and trajectories in planar semimodular lattices. (2017, preprint)

  23. Grätzer, G., Knapp, E.: Notes on planar semimodular lattices. I. Construction. Acta Sci. Math. (Szeged) 73, 445–462 (2007)

    MathSciNet  MATH  Google Scholar 

  24. Grätzer, G., Knapp, E.: A note on planar semimodular lattices. Algebra Universalis 58, 497–499 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Grätzer, G., Knapp, E.: Notes on planar semimodular lattices II. Congruences. Acta Sci. Math. (Szeged) 74, 37–47 (2008)

    MathSciNet  MATH  Google Scholar 

  26. Grätzer, G., Knapp, E.: Notes on planar semimodular lattices III. Rectangular lattices. Acta Sci. Math. (Szeged) 75, 29–48 (2009)

    MathSciNet  MATH  Google Scholar 

  27. Grätzer, G., Knapp, E.: Notes on planar semimodular lattices. IV. The size of a minimal congruence lattice representation with rectangular lattices. Acta Sci. Math. (Szeged) 76, 3–26 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Grätzer, G., Lakser, H., Schmidt, E.T.: Congruence lattices of finite semimodular lattices. Canad. Math. Bull. 41, 290–297 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. Grätzer, G., Schmidt, E.T.: Ideals and congruence relations in lattices. Acta Math. Acad. Sci. Hungar. 9, 137–175 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  30. Grätzer, G., Schmidt, E. T.: Congruence lattices of finite semimodular lattices. Abstracts Amer. Math. Soc. 97T-06-56 (1997)

  31. Grätzer, G., Schmidt, E.T.: A short proof of the congruence representation theorem for semimodular lattices. Algebra Universalis 71, 65–68 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Grätzer, G., Schmidt, E.T.: An extension theorem for planar semimodular lattices. Period. Math. Hungar. 69, 32–40 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Grätzer, G., Wehrung, F. (eds.): Lattice Theory: Special Topics and Applications, vol. 1. Birkhäuser, Basel (2014)

    MATH  Google Scholar 

  34. Grätzer, G., Wehrung, F. (eds.): Lattice Theory: Special Topics and Applications, vol. 2. Birkhäuser, Basel (2016)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Grätzer.

Additional information

Presented by F. Wehrung.

To the memory of E. T. Schmidt.

This article is part of the topical collection “In memory of E. Tamás Schmidt” edited by Robert W. Quackenbush.

This research was supported by NFSR of Hungary (OTKA), Grant Number K 115518.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Czédli, G., Grätzer, G. & Lakser, H. Congruence structure of planar semimodular lattices: the General Swing Lemma. Algebra Univers. 79, 40 (2018). https://doi.org/10.1007/s00012-018-0483-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00012-018-0483-2

Keywords

Mathematics Subject Classification

Navigation