Skip to main content
Log in

Homomorphisms from \(C(X,\mathbb {Z})\) into a ring of continuous functions

  • Published:
Algebra universalis Aims and scope Submit manuscript

Abstract

Let X be a zero-dimensional space and Y be a Tychonoff space. We show that every non-zero ring homomorphism \(\Phi :C(X,\mathbb {Z})\rightarrow C(Y)\) can be induced by a continuous function \(\pi :Y\rightarrow \upsilon _0X.\) Using this, it turns out that the kernel of such homomorphisms is equal to the intersection of some family of minimal prime ideals in \({{\mathrm{MinMax}}}\left( C(X,\mathbb {Z})\right) .\) As a consequence, we are able to obtain the fact that the factor ring \(\frac{C(X,\mathbb {Z})}{C_F(X,\mathbb {Z})}\) is a subring of some ring of continuous functions if and only if each infinite subset of isolated points of X has a limit point in \(\upsilon _0X.\) This implies that for an arbitrary infinite set X,  the factor ring \(\frac{\prod _{_{x\in X}}\mathbb {Z}_{_{x}}}{\oplus _{_{x\in X}}\mathbb {Z}_{_{x}}}\) is not embedded in any ring of continuous functions. The classical ring of quotients of the factor ring \(\frac{C(X,\mathbb {Z})}{C_F(X,\mathbb {Z})}\) is fully characterized. Finally, it is shown that the factor ring \(\frac{C(X,\mathbb {Z})}{C_F(X,\mathbb {Z})}\) is an I-ring if and only if each infinite subset of isolated points on X has a limit point in \(\upsilon _0X\) and \(\upsilon _0X{\setminus }\mathbb {I}(X)\) is an extremally disconnected \(C_{\mathbb {Z}}\)-subspace of \(\upsilon _0X,\) where \(\mathbb {I}(X)\) is the set of all isolated points of X.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alling, N.L.: Rings of continuous integer-valued functions and nonstandard arithmetic. Trans. Am. Math. Soc. 118, 498–525 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  2. Azarpanah, F.: Algebraic properties of some compact spaces. Real Anal. Exch. 25, 317–328 (2000)

    MathSciNet  MATH  Google Scholar 

  3. Călugăreanu, G.: Lattice Concepts of Module Theory. Springer Science+Business Media, Dordrecht (2000)

    MATH  Google Scholar 

  4. Drees, K.M.: A Nagata-like theorem for certain function spaces. Algebra Universalis 62, 259–272 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Eggert, N.: Rings whose overrings are integrally closed. J. Reine Angew. Math. 282, 88–95 (1976)

    MathSciNet  MATH  Google Scholar 

  6. Ellis, R.: Extending continuous functions on zero-dimensional spaces. Math. Ann. 186, 114–122 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  7. Engelking, R., Mrówka, S.: On E-compact spaces. Bull. Acad. Pol. Sci. 6, 429–436 (1958)

    MATH  Google Scholar 

  8. Estaji, A.A., Karamzadeh, O.A.S.: On \(C(X)\) modulo its socle. Commun. Algebra 31, 1561–1571 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Finn, R.T., Martinez, J., McGovern, W.W.: Commutative singular \(f\)-rings. In: Holland, W.C., Martinez, J. (eds.) Ordered Algebraic Structures, pp. 149–166. Springer Science+Business Media B. V., Dordrecht (1997)

    Chapter  Google Scholar 

  10. Ghadermazi, M., Karamzadeh, O.A.S., Namdari, M.: On the functionally countable subalgebra of \(C(X)\). Rend. Sem. Mat. Univ. Padova 129, 47–69 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gillman, L., Jerison, M.: Rings of Continuous Functions. Springer, Dordrecht (1976)

    MATH  Google Scholar 

  12. Hager, A.W., Martinez, J.: Fraction-dense algebras and spaces. Acta Appl. Math. 27, 55–65 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Karamzadeh, O.A.S.: On a question of Matlis. Commun. Algebra 25, 2717–2726 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Karamzadeh, O.A.S., Rostami, M.: On the intrinsic topology and some related ideals of \(C(X)\). Proc. Am. Math. Soc. 93, 179–184 (1985)

    MathSciNet  MATH  Google Scholar 

  15. Martinez, J.: \(C(X, \mathbb{Z}),\) revisited. Adv. Math. 99, 152–161 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Martinez, J.: The maximal ring of quotients of an \(f\)-ring. Algebra Universalis 33, 355–369 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. McConnell, J.C., Robson, J.C.: Noncommutative Noetherian Rings. Wiley Interscience, New York (1987)

    MATH  Google Scholar 

  18. Mrówka, S.: Structures of continuous functions III. Rings and lattices of integer-valued continuous functions. Vehr. Ned. Akad. Wet. Sect. I 68, 74–82 (1965)

    MathSciNet  MATH  Google Scholar 

  19. Pierce, R.S.: Rings of integer-valued continuous functions. Trans. Am. Math. Soc. 100, 371–394 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  20. Porter, J.R., Woods, R.G.: Extensions and Absolutes of Hausdorff Spaces. Springer, New York (1988)

    Book  MATH  Google Scholar 

  21. Sharp, R.Y.: Steps in Commutative Algebra, 2nd edn. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  22. Subramanian, H.: Integer-valued continuous functions. Bull. Soc. Math. Fr. 95, 275–263 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  23. Vechtomov, E.M.: Rings of continuous functions with values in a topological division ring. J. Math. Sci. 78, 702–753 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Reza Olfati.

Additional information

Dedicated to Professor Ronnie Levi.

Presented by W. Wm. McGovern.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olfati, A.R. Homomorphisms from \(C(X,\mathbb {Z})\) into a ring of continuous functions. Algebra Univers. 79, 34 (2018). https://doi.org/10.1007/s00012-018-0509-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00012-018-0509-9

Mathematics Subject Classification

Keywords

Navigation