Skip to main content
Log in

The convolution algebra

  • Published:
Algebra universalis Aims and scope Submit manuscript

Abstract

For L a complete lattice L and \(\mathfrak {X}=(X,(R_i)_I)\) a relational structure, we introduce the convolution algebra \(L^{\mathfrak {X}}\). This algebra consists of the lattice \(L^X\) equipped with an additional \(n_i\)-ary operation \(f_i\) for each \(n_i+1\)-ary relation \(R_i\) of \(\mathfrak {X}\). For \(\alpha _1,\ldots ,\alpha _{n_i}\in L^X\) and \(x\in X\) we set \(f_i(\alpha _1,\ldots ,\alpha _{n_i})(x)=\bigvee \{\alpha _1(x_1)\wedge \cdots \wedge \alpha _{n_i}(x_{n_i}):(x_1,\ldots ,x_{n_i},x)\in R_i\}\). For the 2-element lattice 2, \(2^\mathfrak {X}\) is the reduct of the familiar complex algebra \(\mathfrak {X}^+\) obtained by removing Boolean complementation from the signature. It is shown that this construction is bifunctorial and behaves well with respect to one-one and onto maps and with respect to products. When L is the reduct of a complete Heyting algebra, the operations of \(L^\mathfrak {X}\) are completely additive in each coordinate and \(L^\mathfrak {X}\) is in the variety generated by \(2^\mathfrak {X}\). Extensions to the construction are made to allow for completely multiplicative operations defined through meets instead of joins, as well as modifications to allow for convolutions of relational structures with partial orderings. Several examples are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banaschewski, B., Nelson, E.: Boolean Powers as Algebras of Continuous Functions. Dissertationes Math. (Rozprawy Mat.), vol. 179 (1980)

  2. Bezhanishvili, G., Harding, J.: Functional monadic Heyting algebras. Algebra Univ 48, 1–10 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra. Graduate Texts in Mathematics, vol. 78, Springer, New York (1981)

  4. Foster, A.L.: Generalized “Boolean” theory of universal algebras. I. Subdirect sums and normal representation theorem. Math. Z. 58, 306–336 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  5. Foster, A.L.: Generalized “Boolean” theory of universal algebras. II. Identities and subdirect sums of functionally complete algebras. Math. Z. 59, 191–199 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  6. Galatos, N., Jipsen, P.: Distributive residuated frames and generalized bunched implication algebras. http://math.chapman.edu/~jipsen/preprints/GalatosJipsen DFLFEP20161024.pdf. Accessed 2017

  7. Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic Glimpse at Substructural Logics. Studies in Logic and the Foundations of Mathematics, vol. 151. Elsevier, Amsterdam (2007)

  8. Gehrke, M., Harding, J.: Bounded lattice expansions. J. Algebra 238, 345–371 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gehrke, M., Jónsson, B.: Bounded distributive lattices with operators. Math. Jpn. 40(2), 207–215 (1994)

    MathSciNet  MATH  Google Scholar 

  10. Goldblatt, R.: Varieties of complex algebras. Ann. Pure Appl. Logic 44, 173–242 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Harding, J., Walker, C., Walker, E.: The Truth Value Algebra of Type-2 Fuzzy Sets: Order Convolutions of Functions on the Unit Interval. Monographs and Research Notes in Mathematics. Chapman and Hall/CRC, London (2016)

  12. Jónsson, B.: Mathematical Reviews MR0122745

  13. Jónsson, B., Tarski, A.: Boolean algebras with operators, part I. Am. J. Math. 73, 891–939 (1951)

    Article  MATH  Google Scholar 

  14. Jónsson, B., Tarski, A.: Boolean algebras with operators, Part II. Am. J. Math. 74, 127–162 (1952)

    Article  MATH  Google Scholar 

  15. Kripke, S.A.: Semantical analysis of modal logic I. Normal Modal Propositional Calculi. Z. Math. Logik Grundlag. Math. 9, 67–96 (1963)

  16. Monteiro, A., Varsavsky, O.: Algebras de Heyting monádicas. Actas de las X Jornadas de la Unión Matemática Argentina, Bahía Blanca, pp. 52–62 (1957)

  17. Picado, J., Pultr, A.: Frames and Locales: Topology Without Points. Frontiers in Mathematics, vol. 28. Birkhäuser, Basel (2012)

  18. Raney, G.N.: Completely distributive lattices. Proc. Am. Math. Soc. 3, 677–680 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tarski, A.: On the calculus of relations. J. Symb. Logic 6, 73–89 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zadeh, L.: The concept of a linguistic variable and its application to approximate reasoning I. Inf. Sci. 8, 199–249 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zadeh, L.: The concept of a linguistic variable and its application to approximate reasoning II. Inf. Sci. 8, 301–357 (1975)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Harding.

Additional information

Presented by J. B. Nation.

Dedicated to the memory of Bjarni Jónsson.

This article is part of the topical collection “In memory of Bjarni Jónsson” edited by J. B. Nation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harding, J., Walker, C. & Walker, E. The convolution algebra. Algebra Univers. 79, 33 (2018). https://doi.org/10.1007/s00012-018-0510-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00012-018-0510-3

Keywords

Mathematics Subject Classification

Navigation