Skip to main content
Log in

Multivariable \((\varphi ,\Gamma )\)-modules and smooth o-torsion representations

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

Let G be a \(\mathbb {Q}_p\)-split reductive group with connected centre and Borel subgroup \(B=TN\). We construct a right exact functor \(D^\vee _\Delta \) from the category of smooth modulo \(p^n\) representations of B to the category of projective limits of finitely generated étale \((\varphi ,\Gamma )\)-modules over a multivariable (indexed by the set of simple roots) commutative Laurent series ring. These correspond to representations of a direct power of \(\mathrm {Gal}(\overline{\mathbb {Q}_p}/\mathbb {Q}_p)\) via an equivalence of categories. Parabolic induction from a subgroup \(P=L_PN_P\) gives rise to a basechange from a Laurent series ring in those variables with corresponding simple roots contained in the Levi component \(L_P\). \(D^\vee _\Delta \) is exact and yields finitely generated objects on the category \(SP_A\) of finite length representations with subquotients of principal series as Jordan–Hölder factors. Lifting the functor \(D^\vee _\Delta \) to all (noncommuting) variables indexed by the positive roots allows us to construct a G-equivariant sheaf \(\mathfrak {Y}_{\pi ,\Delta }\) on G / B and a G-equivariant continuous map from the Pontryagin dual \(\pi ^\vee \) of a smooth representation \(\pi \) of G to the global sections \(\mathfrak {Y}_{\pi ,\Delta }(G/B)\). We deduce that \(D^\vee _\Delta \) is fully faithful on the full subcategory of \(SP_A\) with Jordan–Hölder factors isomorphic to irreducible principal series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berger, L.: Représentations modulaires de \(\text{ GL }_{2}(\mathbb{Q}_p)\) et représentations galoisiennes de dimension 2. Astérisque 330, 263–279 (2010)

    MATH  Google Scholar 

  2. Berger, L.: Multivariable Lubin–Tate \((\varphi,\Gamma )\)-modules and filtered \(\varphi \)-modules. Math. Res. Lett. 20(3), 409–428 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berger, L.: Multivariable \((\varphi ,\Gamma )\)-modules and locally analytic vectors. Duke Math. J. (preprint) (2016)

  4. Breuil, Ch.: Sur quelques représentations modulaires et \(p\)-adiques de \(\text{ GL }_{2}(\mathbb{Q}_p)\) I. Compos. Math. 138, 165–188 (2003)

    Article  MATH  Google Scholar 

  5. Breuil, Ch.: Sur quelques représentations modulaires et \(p\)-adiques de \(\text{ GL }_{2}(\mathbb{Q}_p)\) II. J. Inst. Math. Jussieu 2, 1–36 (2003)

    Article  MathSciNet  Google Scholar 

  6. Breuil, Ch., Emerton, M.: Représentations \(p\)-adiques ordinaires de \(\text{ GL }_{2}(\mathbb{Q}_p)\) et compatibilité local-global. Astérisque 331, 255–315 (2010)

    MATH  Google Scholar 

  7. Breuil, Ch.: The emerging \(p\)-adic Langlands programme. In: Proceedings of the International Congress of Mathematicians Volume II, pp. 203–230. Hindustan Book Agency, New Delhi (2010)

  8. Breuil, Ch.: Induction parabolique et \((\varphi,\Gamma )\)-modules. Algebra Number Theory 9(10), 2241–2291 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Breuil, Ch.: Private Communication, 11/03/2016

  10. Breuil, Ch., Herzig, F.: Ordinary representations of \(G(\mathbb{Q}_p)\) and fundamental algebraic representations. Duke Math. J. 164, 1271–1352 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Breuil, Ch., Paškūnas, V.: Towards a modulo \(p\) Langlands correspondence for \(\text{ GL }_{2}\). Mem. AMS 216(1016) (2012). doi:10.1090/S0065-9266-2011-00623-4

  12. Colmez, P.: \((\varphi, \Gamma )\)-modules et représentations du mirabolique de \(GL_{2}(\mathbb{Q}_{p})\). Astérisque 330, 61–153 (2010)

    Google Scholar 

  13. Colmez, P.: Représentations de \(GL_{2}(\mathbb{Q}_{p})\) et \((\varphi, \Gamma )\)-modules. Astérisque 330, 281–509 (2010)

    Google Scholar 

  14. Emerton, M.: On a Class of Coherent Rings, with Applications to the Smooth Representation Theory of \(GL_{2}(\mathbb{Q}_{p})\) in Characteristic \(p\). (preprint) (2008)

  15. Emerton, M.: Ordinary parts of admissible representations of \(p\)-adic reductive groups I. Definition and first properties. Astérisque 331, 355–402 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Erdélyi, M.: On the Schneider–Vigneras functor for principal series. J. Number Theory 162, 68–85 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Erdélyi, M., Zábrádi, G.: Links Between Generalized Montréal Functors. (preprint) (2015). arXiv:1412.5778

  18. Fontaine, J.M.: Représentations \(p\)-adiques des corps locaux. In: Cartier, P., Illusie, L., Katz, N.M., Laumon, G., Manin, Y., Ribet, K.A. (eds.) The Grothendieck Festschrift, vol. 2, Progress in Mathematics, vol. 87, pp. 249–309. Birkhäuser, Basel (1991)

  19. Hauseux, J.: Complements sur les Extensions Entre Series Principales \(p\)-Adiques et Modulo \(p\) de \(G(F)\). (preprint) (2014). arXiv:1407.4630

  20. Kedlaya, K.: Some Slope Theory for Multivariate Robba Rings. (preprint) (2013). arXiv:1311.7468

  21. Kisin, M.: Deformations of \(G_{\mathbb{Q}_p}\) and \(\text{ GL }_{2}(\mathbb{Q}_p)\) representations. Astérisque 330, 511–528 (2010)

    MathSciNet  Google Scholar 

  22. Li, H., van Oystaeyen, F.: Zariskian Filtrations, \(K\)-Monographs in Mathematics, vol. 2. Kluwer, Dordrecht (1996)

    Google Scholar 

  23. McConnell, J.C., Robson, J.C.: Noncommutative Noetherian Rings, Graduate Studies in Mathematics, vol. 30. AMS, Providence (1987)

    MATH  Google Scholar 

  24. Paškūnas, V.: The image of Colmez’s Montreal functor. Publ. Math. IHES 118(1), 1–191 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Schneider, P., Vigneras, M.-F.: A functor from smooth \(o\)-torsion representations to \((\varphi, \Gamma )\)-modules, Volume in honour of F. Shahidi. Clay Math. Proc. 13, 525–601 (2011)

    MATH  Google Scholar 

  26. Schneider, P., Vigneras, M.F., Zábrádi, G.: From étale \(P_+\)-representations to \(G\)-equivariant sheaves on \(G/P\). In: Automorphic Forms and Galois Representations, vol. 2, LMS Lecture Note Series, vol. 415, pp. 248–366. Cambridge University Press, Cambridge (2014)

  27. Vigneras, M.-F.: Série principale modulo \(p\) de groupes réductifs \(p\)-adiques. Geom. Funct. Anal. 17, 2090–2112 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zábrádi, G.: \((\varphi,\Gamma )\)-modules over noncommutative overconvergent and Robba rings. Algebra Number Theory 8(1), 191–242 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zábrádi, G.: Multivariable \((\varphi ,\Gamma )\)-Modules and Products of Galois Groups. (preprint) (2016)

Download references

Acknowledgments

My debt to the works of Christophe Breuil [8], Pierre Colmez [12, 13], Peter Schneider, and Marie-France Vignéras [25, 26] will be obvious to the reader. I would also like to thank Márton Erdélyi, Jan Kohlhaase, Vytautas Paškūnas, Peter Schneider, and Tamás Szamuely for discussions on the topic. I am grateful to the referee for the careful reading of the manuscript and for their various comments

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gergely Zábrádi.

Additional information

I would like to thank the MTA Alfréd Rényi Institute of Mathematics for its hospitality where parts of this work was written. This research was supported by a Hungarian OTKA Research Grant K-100291 and by the János Bolyai Scholarship of the Hungarian Academy of Sciences.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zábrádi, G. Multivariable \((\varphi ,\Gamma )\)-modules and smooth o-torsion representations. Sel. Math. New Ser. 24, 935–995 (2018). https://doi.org/10.1007/s00029-016-0259-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-016-0259-5

Mathematics Subject Classification

Navigation