Skip to main content
Log in

On Beilinson’s equivalence for p-adic cohomology

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

In this short paper, we construct a unipotent nearby cycle functor and show a p-adic analogue of Beilinson’s equivalence comparing two derived categories: the derived category of holonomic arithmetic \({\mathcal {D}}\)-modules and the derived category of arithmetic \({\mathcal {D}}\)-modules whose cohomologies are holonomic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abe, T.: Explicit calculation of Frobenius isomorphisms and Poincaré duality in the theory of arithmetic \({\cal{D}}\)-modules. Rend. Semin. Mat. Univ. Padova 131, 89–149 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abe, T.: Langlands correspondence for isocrystals and existence of crystalline companion for curves, preprint, arXiv:1310.0528

  3. Abe, T., Caro, D.: Theory of weights in \(p\)-adic cohomology, preprint, arXiv:1303.0662

  4. Abe, T., Marmora, A.: On \(p\)-adic product formula for epsilon factors. JIMJ 14(2), 275–377 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Beilinson, A.: On the derived category of perverse sheaves. Lecture Notes in Mathematics, vol. 1289, pp. 27–41. Springer, Berlin (1987)

  6. Beilinson, A.: How to glue perverse sheaves. Lecture Notes in Mathematics, vol. 1289, pp. 42–51. Springer, Berlin (1987)

  7. Beilinson, A., Bernstein, J.: A proof of Jantzen conjectures. Adv. Soviet Math. 16, 1–50 (1993)

    MathSciNet  MATH  Google Scholar 

  8. Berthelot, P.: Cohomologie rigide et cohomologie rigide à supports propres. Première partie (version provisoire 1991), Prépublication IRMR 96-03 (1996)

  9. Berthelot, P.: \({\cal{D}}\)-modules arithmétiques. I. Opérateurs différentiels de niveau fini. Ann. Sci. École Norm. Sup. 29, 185–272 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Berthelot, P.: \({\cal{D}} \)-modules arithmétiques. II. Descente par Frobenius. Mém. Soc. Math. Fr. (N.S.), p. vi+136 (2000)

  11. Berthelot, P.: Introduction à la théorie arithmétique des \(\cal{D}\)-modules, Astérisque, no. 279, pp. 1–80. Cohomologies \(p\)-adiques et applications arithmétiques, II (2002)

  12. Caro, D.: Dévissages des \(F\)-complexes de \(\cal{D}\)-modules arithmétiques en \(F\)-isocristaux surconvergents. Invent. Math. 166, 397–456 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Caro, D.: \({\cal{D}}\)-modules arithmétiques surholonomes. Ann. Sci. École Norm. Sup. 42, 141–192 (2009)

    Article  MATH  Google Scholar 

  14. Caro, D.: Holonomie sans structure de Frobenius et critères d’holonomie. Ann. Inst. Fourier 61, 1437–1454 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Caro, D.: Stabilité de l’holonomie sur les variétés quasi-projectives. Compos. Math. 147, 1772–1792 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Caro, D.: Sur la préservation de la surconvergence par l’image directe d’un morphisme propre et lisse. Ann. Sci. Éc. Norm. Supér. (4) 48(1), 131–169 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Caro, D.: Sur la stabilité par produit tensoriel de complexes de \({\cal{D}}\)-modules arithmétiques. Manuscr. Math. 147, 1–41 (2015)

    Article  MATH  Google Scholar 

  18. Caro, D.: La surcohérence entraîne l’holonomie. Bull. Soc. Math. Fr. 144(3), 429–475 (2016)

    Article  MATH  Google Scholar 

  19. Caro, D.: Systèmes inductifs cohérents de \({\cal{D}}\)-modules arithmétiques logarithmiques, stabilité par opérations cohomologiques. Doc. Math. 21, 1515–1606 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Caro, D.: Unipotent monodromy and arithmetic \({\cal{D}}\)-modules. Manuscr. Math. (2017). https://doi.org/10.1007/s00229-017-0959-y

  21. Christol, G., Mebkhout, Z.: Sur le théorème de l’indice des équations différentielles \(p\)-adiques IV. Invent. Math. 143, 629–672 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Crew, R.: Arithmetic \({\cal{D}}\)-modules on the unit disk. Compos. Math. 48, 227–268 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kedlaya, K.S.: Semistable reduction for overconvergent \(F\)-isocrystals. I. Unipotence and logarithmic extensions. Compos. Math. 143, 1164–1212 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kedlaya, K.S.: Semistable reduction for overconvergent \(F\)-isocrystals, IV: local semistable reduction at nonmonomial valuations. Compos. Math. 147, 467–523 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Laumon, G.: Comparaison de caractéristiques d’Euler–Poincaré en cohomologie \(l\)-adique. C. R. Acad. Sci. Paris Sér. I Math. 292(3), 209–212 (1981)

    MathSciNet  MATH  Google Scholar 

  26. Lichtenstein, S.: Vanishing cycles for algebraic \({\cal{D}}\)-modules, thesis. http://www.math.harvard.edu/~gaitsgde/grad_2009/Lichtenstein(2009).pdf

  27. Virrion, A.: Dualité locale et holonomie pour les \(\cal{D}\)-modules arithmétiques. Bull. Soc. Math. Fr. 128(1), 1–68 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author (T.A.) was supported by Grant-in-Aid for Young Scientists (B) 25800004. The second author (D.C.) thanks Antoine Chambert-Loir for his suggestion to consider the comparison of Euler characteristics in the p-adic context. The second author (D.C) was supported by the I.U.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Caro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abe, T., Caro, D. On Beilinson’s equivalence for p-adic cohomology. Sel. Math. New Ser. 24, 591–608 (2018). https://doi.org/10.1007/s00029-017-0370-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-017-0370-2

Mathematics Subject Classification

Navigation