Skip to main content
Log in

Approximate cohomology

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

Let k be a field, G be an abelian group and \(r\in \mathbb N.\) Let L be an infinite dimensional k-vector space. For any \(m\in {\text {End}}_k(L)\) we denote by \(r(m)\in [0,\infty ]\) the rank of m. We define by \(R(G,r,k)\in [0,\infty ]\) the minimal R such that for any map \(A:G \rightarrow {\text {End}}_k(L)\) with \(r(A(g'+g'')-A(g')-A(g''))\le r\), \(g',g''\in G\) there exists a homomorphism \(\chi :G\rightarrow {\text {End}}_k(L)\) such that \(r(A(g)-\chi (g))\le R(G, r, k)\) for all \(g\in G\). We show the finiteness of R(Grk) for the case when k is a finite field, \(G=V\) is a k-vector space V of countable dimension. We actually prove a generalization of this result. In addition we introduce a notion of Approximate Cohomology groups \(H^k_\mathcal F(V,M)\) [which is a purely algebraic analogue of the notion of \(\epsilon \)-representation (Kazhdan in Isr. J. Math. 43:315–323, 1982)] and interperate our result as a computation of the group \(H^1_\mathcal F(V,M)\) for some V-modules M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bhowmick A., Lovett S.: Bias vs structure of polynomials in large fields, and applications in effective algebraic geometry and coding theory. arXiv:1506.02047

  2. Bergelson, V., Tao, T., Ziegler, T.: An inverse theorem for the uniformity seminorms associated with the action of \(\mathbb{F}_p^{\infty }\). Geom. Funct. Anal. 19(6), 1539–1596 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Gowers, T.: A new proof of Szemerédi’s theorem. Geom. Funct. Anal. 11, 465588 (2001)

    Article  MATH  Google Scholar 

  4. Green, B., Tao, T.: The distribution of polynomials over finite fields, with applications to the Gowers norms. Contrib. Discrete Math. 4(2), 1–36 (2009)

    MathSciNet  MATH  Google Scholar 

  5. Green, B., Tao, T.: An equivalence between inverse sumset theorems and inverse conjectures for the \(U_3\) norm. Math. Proc. Camb. Philos. Soc. 149(1), 1–19 (2010)

    Article  MATH  Google Scholar 

  6. Kazhdan, D.: On \(\epsilon \)-representations. Isr. J. Math. 43(4), 315–323 (1982)

    Article  MATH  Google Scholar 

  7. Lovett, S.: Equivalence of polynomial conjectures in additive combinatorics. Combinatorica 32(5), 607–618 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Samorodnitsky, A.: Low-degree tests at large distances. In: Proceedings of the thirty-ninth annual ACM symposium on Theory of computing STOC ’07, San Diego, California, USA —June 11–13, pp. 506–515. ACM New York, NY (2007)

  9. Schmidt, W.M.: Bounds for exponential sums. Acta Arith. 44, 281–297 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  10. Tao, T.: https://terrytao.wordpress.com/2008/11/09/a-counterexample-to-a-strong-polynomial-freiman-ruzsa-conjecture/

  11. Tao, T., Ziegler, T.: The inverse conjecture for the Gowers norm over finite fields via the correspondence principle. Anal. PDE 3(1), 1–20 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Tao, T., Ziegler, T.: The inverse conjecture for the Gowers norm over finite fields in low characteristic. Ann. Comb. 16(1), 121–188 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wolf, J.: Finite field models in arithmetic combinatorics ten years on. Finite Fields Appl. 32, 233–274 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamar Ziegler.

Additional information

Dedicated to A. Beilinson on the occasion of his 60-birthday.

Tamar Ziegler is supported by ERC Grant ErgComNum 682150.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazhdan, D., Ziegler, T. Approximate cohomology. Sel. Math. New Ser. 24, 499–509 (2018). https://doi.org/10.1007/s00029-017-0335-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-017-0335-5

Keywords

Mathematics Subject Classification

Navigation