Skip to main content
Log in

Towards a cluster structure on trigonometric zastava

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We study a moduli problem on a nodal curve of arithmetic genus 1, whose solution is an open subscheme in the zastava space for projective line. This moduli space is equipped with a natural Poisson structure, and we compute it in a natural coordinate system. We compare this Poisson structure with the trigonometric Poisson structure on the transversal slices in an affine flag variety. We conjecture that certain generalized minors give rise to a cluster structure on the trigonometric zastava.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bezrukavnikov, R., Finkelberg, M., Mirković, I.: Equivariant homology and \(K\)-theory of affine Grassmannians and Toda lattices. Compos. Math. 141(3), 746–768 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Braverman, A., Finkelberg, M.: Semi-infinite Schubert varieties and quantum \(K\)-theory of flag manifolds. J. Am. Math. Soc. 27, 1147–1168 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Braverman, A., Finkelberg, M.: Weyl modules and \(q\)-Whittaker functions. Math. Ann. 359, 45–59 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Braverman, A., Dobrovolska, G., Finkelberg, M.: Gaiotto-Witten superpotential and Whittaker D-modules on monopoles. Adv. Math. 300, 451–472 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Braverman, A., Finkelberg, M., Nakajima, H.: Towards a Mathematical Definition of 3-Dimensional \({\cal{N}}=4\) Gauge Theories, II, arXiv:1601.03586

  6. Braverman, A., Finkelberg, M., Nakajima, H.: Coulomb Branches of \(3d {\cal{N}} =4\) Quiver Gauge Theories and Slices in the Affine Grassmannian, arXiv:1604.03625

  7. Etingof, P., Schiffmann, O.: Lectures on Quantum Groups, 2nd edition. Lectures in Mathematical Physics. International Press, Somerville, xii+242 pp (2002)

  8. Faybusovich, L., Gekhtman, M.: Poisson brackets on rational functions and multi-Hamiltonian structure for integrable lattices. Phys. Lett. A 272(4), 236–244 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Feigin, B., Odesskii, A.: Vector bundles on Elliptic Curves and Sklyanin Algebras, Topics in quantum groups and finite-type invariants. Am. Math. Soc. Transl. Ser. 2, 185, Am. Math. Soc. Providence, RI 65–84 (1998)

  10. Finkelberg, M., Kuznetsov, A., Markarian, N., Mirković, I.: A note on a symplectic structure on the space of \(G\)-monopoles. Commun. Math. Phys. 201, 411–421 (1999). Erratum, Commun. Math. Phys. 334, 1153–1155 (2015); arXiv:math/9803124, v6

  11. Gekhtman, M., Shapiro, M., Vainshtein, A.: Cluster Algebras and Poisson Geometry, Mathematical Surveys and Monographs 167. American Mathematical Society, Providence, RI (2010)

    Book  MATH  Google Scholar 

  12. Gekhtman, M., Shapiro, M., Vainshtein, A.: Generalized Bäcklund–Darboux transformations for Coxeter–Toda flows from a cluster algebra perspective. Acta Math. 206(2), 245–310 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Goncharov, A., Shen, L.: Geometry of canonical bases and mirror symmetry. Inv. Math. 202, 487–633 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Helmke, U., Fuhrmann, P.A.: Bezoutians. Linear Algebra Appl. 122(123/124), 1039–1097 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jarvis, S.: Euclidean monopoles and rational maps. Proc. Lond. Math. Soc. (3) 77(1), 170–192 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jarvis, S.: Construction of Euclidean monopoles. Proc. Lond. Math. Soc. (3) 77(1), 193–214 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kac, V.G., Raina, A.K.: Bombay Lectures on Highest Weight Representations of Infinite-dimensional Lie Algebras, Advanced Series in Mathematical Physics, 2. World Scientific Publishing Co., Inc., Teaneck, NJ, xii+145 pp (1987)

  18. Kamnitzer, J., Webster, B., Weekes, A., Yakobi, O.: Yangians and quantizations of slices in the affine Grassmannian. Algebra Number Theory 8(4), 857–893 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kronecker, L.: Zur Theorie der Elimination einer Variabeln aus zwei algebraischen Gleichungen, Werke 2, pp. 113–192. Teubner, Leipzig (1897)

    Google Scholar 

  20. Leclerc, B.: Cluster structures on strata of flag varieties. Adv. Math. 300, 190–228 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lu, J.-H., Yakimov, M.: Group orbits and regular partitions of Poisson manifolds. Comm. Math. Phys. 283(3), 729–748 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lenagan, T.H., Yakimov, M.: Prime Factors of Quantum Schubert Cell Algebras and Clusters for Quantum Richardson Varieties. arXiv:1503.06297

  23. Mirković, I., Vilonen, K.: Geometric Langlands duality and representations of algebraic groups over commutative rings. Ann. Math. (2) 166(1), 95–143 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Spaide, T.: Shifted Symplectic and Poisson Structures on Spaces of Framed Maps. arXiv:1607.03807

  25. Yu, U.A., Cherkasov, T.M.: The search for the maximum of a polynomial. J. Symb. Comput. 25(5), 587–618 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Finkelberg.

Additional information

To Sasha Beilinson with love and gratitude.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Finkelberg, M., Kuznetsov, A., Rybnikov, L. et al. Towards a cluster structure on trigonometric zastava. Sel. Math. New Ser. 24, 187–225 (2018). https://doi.org/10.1007/s00029-016-0287-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-016-0287-1

Mathematics Subject Classification

Navigation