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Bayesian hierarchical models for analysing the
spatial distribution of bioclimatic indices

Xavier Barber!, David Conesa?, Antonio Lépez-Quilez?, Asuncién Mayoral',
Javier Morales! and Antoni Barber’

Abstract

A methodological approach for modelling the spatial distribution of bioclimatic indices is proposed
in this paper. The value of the bioclimatic index is modelled with a hierarchical Bayesian model
that incorporates both structured and unstructured random effects. Selection of prior distributions
is also discussed in order to better incorporate any possible prior knowledge about the parame-
ters that could refer to the particular characteristics of bioclimatic indices. MCMC methods and
distributed programming are used to obtain an approximation of the posterior distribution of the
parameters and also the posterior predictive distribution of the indices. One main outcome of
the proposal is the spatial bioclimatic probability distribution of each bioclimatic index, which al-
lows researchers to obtain the probability of each location belonging to different bioclimates. The
methodology is evaluated on two indices in the Island of Cyprus.

MSC: 62F15, 62M30, 62P10, 62P12, 86A32.
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1. Introduction

Bioclimatology is an ecological science that studies the relationship between climate and
the distribution of the living species on Earth, particularly the distribution of vegetation.
It aims to determine the relationship between certain numerical values of temperature
and precipitation and the areas in which single plant species and plant communities are
geographically distributed. The spatial distribution of the species and the relationship
between climate and vegetation allows us to better manage plant resources and land-
scape, as well as to forecast the production of agricultural and forestry resources to
combat hunger and determine future vegetation scenarios in certain geographic areas
through the study of vegetation borders.
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As an ecological science, the distribution of the spatial structure of species and
its relationship with environmental factors having high spatial dependence has been
an important subject of study for several years. Osborne et al. (2000); Britton et al.
(2001); Cheddadi, Guiot and Jolly (2001); Tasser and Tappeiner (2002); Legendre, Bor-
card and Peres-Neto (2005); Dostalek, Frantik and Silarové (2014); Baltensperger and
Huettmann (2015) are examples of studies applying these ideas to analyse land-use
changes and distribution of terrestrial vegetation.

Bioclimatic Classification Systems have been introduced to assign bioclimates to a
region under study by means of what are known as bioclimatic indices. But more impor-
tantly, these bioclimates allow us to identify the geographical limits of the main types
of vegetation in the region under study. As a result, having a good spatial representation
of the bioclimatic indices is key to describing the relationship between climate and the
distribution of vegetation.

Information about bioclimatic indices is usually available only in meteorological
stations, not in the whole region of study. It is therefore important to be able to construct
maps from these data. Until now, many studies have used only standard geographical
information system (GIS) techniques. Geostatistics has also been proposed as a way
to explain bioclimatic indices (Robertson, 1987; Rossi et al., 1992; Burrough, 2001;
Garzén-Machado, Otto and del Arco Aguilar, 2014), although this approach can present
certain obstacles such as spatial scale problems (Atkinson and Tate, 2000).

Our main interest in this research is twofold. Firstly, we present another way to
model the spatial distribution of bioclimatic indices. Specifically, we propose a hierar-
chical Bayesian model to predict (in non-sampled locations) the bioclimatic index values
by incorporating the altitude and spatial features of each sampled location. As usual in
Bayesian approaches, we also explain how to select prior distributions in this context.
But more importantly, we secondly describe the two main outcomes of the modelling,
i.e., the posterior predictive distribution of bioclimatic indices and the probability maps
for the bioclimates, which provide more realistic geographical limits. As the resulting
hierarchical model has no closed expression for the posterior distribution of all the pa-
rameters, we also present how to perform inference by MCMC methods, and how to
predict on non-observed locations by means of distributed programming, reducing the
computation time by more than 80% in comparison to standard R packages.

The remainder of this article is organised as follows. After this introduction, Section
2 presents a general Bayesian hierarchical spatial model of the bioclimatic indices. In
Section 3, we describe how to select prior distributions, while Section 4 explains how to
perform inference and prediction for these indices. In Section 5, we apply this method-
ology in a real setting, we obtain the predictive distributions of two bioclimatic indices
on the island of Cyprus, using the altitude and the climate information (temperatures
and rainfall) from 59 meteorological stations. Finally, Section 6 concludes and presents
some future lines of research.
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2. Modelling bioclimatic indices

In what follows, we first introduce three bioclimatic indices of the Worldwide Biocli-
matic Classification System by Rivas-Martinez (Rivas-Martinez, 1994; Rivas-Martinez
et al., 2002; Rivas-Martinez and Rivas-Saenz, 2016), one of the most popular Biocli-
matic Classification Systems available. This classification encompasses five macrobio-
climates (Tropical, Mediterranean, Temperate, Boreal and Polar), which are in turn sub-
divided into twenty-seven bioclimates and five bioclimatic variants. It is worth noting
that all the results presented here could also be applied to any other bioclimatic index
from any classification selected. After defining the bioclimatic indices, Section 2.2 de-
scribes the Bayesian hierarchical spatial model for each one of them.

2.1. Bioclimatic indices

As previously mentioned, the procedure for constructing bioclimatic maps is based on
the bioclimatic indices. In general, these indices are values obtained by simple mathe-
matical expressions that combine certain climatic parameters and factors such as altitude
or latitude, and which are commonly used to characterise the climate of a region. This
makes it possible to recognise climatically homogeneous areas that may have similar
vegetation types (species, communities, series).

One of the most important bioclimatic indices is the Ombrothermic Index (Ol), which
relates the rainfall and the temperature in an area using an average of the last n years
(usually at least 25 years), and it is defined by

o125 (7). 1)

n j=1 Tp-,j

where P, is the sum of the average rainfall (in mm.) of the months whose average tem-
perature is above zero degrees Celsius, and T, is the sum of monthly average tempera-
tures above zero degrees Celsius, expressed in tenths of a degree.

The variation of temperature (thermicity) over the seasons in an area is one of the
most influential factors in the characterisation of climate, since the vegetation distribu-
tion is greatly affected by the area’s thermicity. Hence, another important bioclimatic
index is the Thermicity Index (T1) of the last n years, defined as

n

10
TI=— (Ti4+m;+M, 2
=D (Tj+m+M;), 2)

Jj=1

where T is the sum of the annual mean temperature in decimal degrees, m is the average
of the minimum temperature of the coldest month and M is the average of the maximum
temperature of the coldest month.
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This Thermicity Index has some problems of definition in extratropical regions (North
and South of latitude 23 N and S respectively). The Compensated Thermicity Index
(TIc) avoids these problems by weighting the Thermicity Index value (TI) by adding or
subtracting the Compensation Value, C;, in those places where the Continentality Index
(CI), defined as the annual oscillation variation of temperature CI = Tax — Thin) takes
extreme values:

, TI if8 < CI< 18, )
| TI+C: ifCI<8orCI>18,i=0,...,4

Note that all the temperatures are in Celsius, and periods are 25 years, the minimum
recommended period.

2.2. Bayesian hierarchical model for bioclimatic indices

After presenting the bioclimatic indices, we now introduce a way of modelling them by
means of a Bayesian hierarchical spatial model. If Y = [Y (s;)]'_, represents the vector
of values of the bioclimatic index in a subset of locations s = (sy,...,s,) in the region
D, then the usual geostatistical assumption is that Y is multivariate normal:

Y ~N(p,%), S

where g denotes the mean vector of the process, and X represents the covariance matrix
between locations. This matrix can be re-written separately as spatial and non-spatial
covariances matrices

E=3,+3%, &)

which, assuming that the observations are conditionally independent given the spatial
process, can also be expressed as

¥, =0c’H(0); and =, = 71, (6)

where H(0) is the Matérn correlation matrix between locations (Matérn, 1986), which
depends on two parameters @ = (¢, ); the scale parameter ¢ > 0 and the shape param-
eter v > 0. It is worth noting that the Matérn is a really flexible and general family of
correlation generalising many of the most-used covariance models in spatial statistics
(exponential and Gaussian among them).

The mean vector of the process can be related with covariates (in our case, altitude),
and so the bioclimatic index is expressed as
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Y|B,W, 72 ~ N (XB+W,71), (7)

where X represents the linear predictor associated with the covariates at the locations
S =(81,---,8n).

Hence, the Bayesian hierarchical model corresponding to geostatistical homoge-
neous Gaussian process data for a bioclimatic index is expressed in three levels of infor-
mation as

(I)  YIBW,2~N(XB+W,72)
(I)  Wlo?,0 ~N(0,02H(9)) (8)
() p(B,o*,7%,0),

where the first level is the Gaussian process, the second level shows the information
on the spatial effect and the third level specifies the prior distribution parameters and
hyper-parameters.

Following Yan et al. (2007), and in order to avoid the identifiability problem of spa-
tial and non-spatial variability, we reparametrise (8) as

(DY ~N(XB.E[(1—r)H(6) +xl))

9)
(1) p(B.&*,,0),
where £2 = 0 + 7% now represents the total variability of the random effects, and x =
72/¢?% stands for the proportion of the non-spatial variability with respect to the total
variability.
Once the model is determined, the next step is to estimate its parameters. As we are
using the Bayesian paradigm, we have to select the prior distribution for the vector of
parameters involved in the model.

3. Selection of prior distributions

Making use of previous information is considered one of the most useful characteristics
of Bayesian statistics. A subjective approach involves defining prior distributions for
unknown parameters according to personal experience and impression, recognising that
the expert opinion is better than no knowledge. In contrast, objective Bayesians defend
the idea that no other information should be considered apart from that introduced during
model specification, although finding that prior distribution which contains only that
knowledge can sometimes be tricky. In the context of spatial geostatistics models, the
case in hand, it must be taken into account that using non-informative priors can lead to
improper posterior distributions (De Oliveira, 2007).
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A usual assumption when expressing prior knowledge is to consider prior indepen-
dence of the parameters, that is,

p(B.E%,k,0) = p(B)p(&*)p(r)p(8).

In order to express our knowledge for each of these parameters, we must elicit both
their distributions and the values of their hyperparameters. As mentioned above, for
the latter the choice of their values can come under the “complete ignorance” premise,
although we can also include the information available about them in order to improve
the final posterior distribution (Dongen, 2006).

In particular, the distribution for B is again based on the assumption of prior inde-
pendence of its components, the usual choice being either Gaussian distributions or non-
informative improper distributions. As the resulting posterior is in both cases proper, we
use the improper one, that is,

p(B) =p(Bo,51) = p(Bo)p(Br) = 1.

With respect to the proportion «, the natural choice is a uniform distribution between
Oand 1, k ~U(0,1).

For the Matérn function parameters, 8 = (¢,v), and taking into account that we
are using the parameterisation proposed by Handcock and Wallis (1994) in which the
parameter ¢ is largely independent of v, we propose using a product of two independent
distributions. In particular, our choice for the prior distribution of ¢ is

1 1
po) = (7). (10)
where d; is the furthest distance between two locations, and d, is the minimum dis-
tance between the two nearest locations. Following recommendations by Stein (1999)
and Finley, Banerjee and Gelfand (2015), our choice of smoothing parameter v is v ~
U(0.05,1.95).

The last parameter to be elicited is the total variability £2 of the bioclimatic index. In
this case, note that information is available which can be included in the prior. Indeed,
as explained in the previous section, indices depend on temperature and precipitation by
definition, and therefore, they only take values within a defined range (the highest and
lowest value of the index in the region of study, according the Rivas-Martinez classifi-
cation), denoted by (Yiin, Ymax ), With Yiin > 0.

This information about £> can be incorporated in the scale parameters of different
distributions. The underlying idea is to consider that the observed values of the index
on a set of locations is a priori uniformly distributed between (¥pin, Ymax ). Note that this
uniform distribution is the most disadvantageous option as this would imply that all the
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regions have the same orographic features. The corresponding variability of this uniform
distribution is

(Ymax - Ymin)2

Var(Y) = 0 ,

(11)
the maximum value of which (denoted as Vj,,x) would be an upper bound of the vari-
ability index. A prior distribution could then be constructed by matching the range of
variability (a,Viyax) with the quantile 0.95 of any chosen distribution (Chambers and
Dunstan, 1986; Strupczewski et al., 2007). In other words,

Vmax
0.05= [ f(rlady, (12)

where f is the chosen prior distribution and e its corresponding parameters. Since vari-
ability is always positive, a can be chosen to be as small as possible (e.g. a = 0.001).
Table 1 shows the resulting scale parameters for the usual priors: uniform over the vari-
ance, uniform over the standard deviation, inverse gamma or half-Cauchy.

Table 1: Upper bound for the variability index and prior distribution
for a specific bioclimatic index range.

"~ Vinax —0.00005

P(E2) ~ U(0.001,b) p— Yo 0
p(€) ~U(0.001, /D) b w
Vinax 52
2y _ B s o
p(€3)~75(2,8) | 095 /0001 Lt
p(£%) ~ HC(6) 5 Vinax

- tan(% ~7r~0.95)

To summarise, the final model for any bioclimatic index Y using the second option
of Table 1 (uniform over the standard deviation) is

(I) Y~N(XB,&[(1-r)H(O)+kI)); 0= (¢,v)
(I p(B,&,k,p,v) 1 xU0.001,vb) x U(0,1) x U(1/d;,1/dy) x U(0.05,1.95)
(13)

Note that the advantage of this final model is that we only have to assign a prior

distribution on &, since the remaining parameters are obtained as o> = (1 — x)&? and
2 2
T = KE-.
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4. Inference and prediction

The model in (13) contains all our knowledge about the index, but it does not yield
closed analytic expressions for the posterior distribution of the parameters, p(8,&,k, ¢,
v|Y,X). Therefore, numerical approximations are needed in order to make inference
about them. Among others, one feasible (indeed one of the most popular) possibility is
to use Markov chain Monte Carlo (MCMC) methods (Gamerman and Lopes, 2006) that
draw samples from any intractable posterior by running a cleverly constructed Markov
chain over a long period, the stationary distribution of which is the one we want to simu-
late from. Among the different ways of building these chains, the most popular are Gibbs
sampling and the Metropolis-Hastings algorithm (Gilks, Richardson and Spiegelhalter,
1996).

In our case, we use WinBUGS (Lunn et al., 2000), a flexible software for performing
the Bayesian analysis of complex statistical models (see Banerjee, Carlin and Gelfand,
2014 for examples of how to implement spatial hierarchical Bayesian models with Win-
BUGS). The reason for this choice is that it gives us more flexibility when specifying the
matrix variance-covariance of the first hierarchy level. Moreover, it allows us to easily
set prior distributions over the standard deviation.

As usual in MCMC, we run three chains for a long period discarding the first hun-
dreds or thousands (depending on the convergence, the burn-in period can be extended)
and then take samples from the three chains. Regarding convergence (to the correct sta-
tionary distribution) assessment, the Brooks-Gelman-Rubin statistic and the effective
sample size (see Gelman et al., 2013 for more information about these statistics) can be
calculated for every parameter in the model. The Brooks-Gelman-Rubin statistic must
have a value under 1.1, while the effective number of iterations must be above 100 for
every mentioned parameter.

Once the inference has been carried out, the next step is to predict the values of the
bioclimatic indices in the rest of the area of interest, especially in unsampled locations.
In our case, as we are using the Bayesian approach, prediction is reduced to obtain the
posterior predictive distribution of the indices in a set of new locations.

In particular, if Y, represents the values of a bioclimatic index in a new set of loca-
tions with observed covariates X,,, then the posterior predictive distribution of the new
values Y, (conditional to the observed ones, henceforth, Y,,) is

p(YP‘YO’XO’XP) = /p(YP|Y07XPMBa§7’%7¢7V)p(ﬂ7§aH7¢7V‘Y’X)d(ﬂa§7"€a¢7y) ’
(14)
where the extended data vector p(Y,|Y,,X,, 8,¢, k,¢,v) has a conditional multivariate
normal distribution arising from the joint multivariate distribution of Y, and ¥, in (7).
As with the posterior distribution of the parameters, expression (14) has no closed
form, and again numerical approximations are needed. One way to obtain a simulated
sample from this posterior predictive distribution is via the composition method. In par-
ticular, if {8;,&;, ki, ¢, v,-}?il, represents a simulated sample from the posterior distribu-
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tion of the parameters, then a simulated sample from the posterior predictive distribution
is obtained by simulating from the conditional multivariate distribution of the observed
values Y, that is, {p(Y,|Y,, X, B;, &, ki, bi, V,')}?il.

Note that the conditional multivariate distribution p(Y,|Y,,X,, 8,&, K, ¢,v) is a mul-
tivariate normal distribution with mean

E[Y,|Y,] = p,+2535,, (Y, p,) (15)
and variance-covariance matrix

VY, Y, ]=%,,-%,3.%,, (16)

00

[ B o
== (3 37

is the covariance matrix of the joint multivariate normal distribution of the extended data
vector (Y,,Y,).

As we are following the reparametrisation by Yan et al. (2007) in (9), the conditional
multivariate distribution p(Y,|Y,,X,,B,¢,k,¢,v) is a multivariate normal distribution
but with mean

where

E(Y,Y,)=X,B+ ((1 —r)H,(0)+rI) ((1 —r)H,,(0) + /-@I)f1 Y, —X,B) (17)
and variance-covariance matrix

V(Y,|Y,) = (18)

¢ [((1 — K)H pp(0) + KT — (1= K)H o () + KI) (1 — K)H o (8) + kI) ™" (1 — k) H . (6) +n1)]

where

HO=\ w0 B0

( H,,(0) Hp(0) )
is the Matérn correlation matrix between predicted and observed locations.
Implementing the above composition method implies evaluating this mean vector
and variance-covariance matrix for each of the simulations. But note that this evaluation
can be computationally expensive. Dealing with 15000 simulations (5000 per chain)
from the posterior distribution and about 1000 new locations (to predict) would involve
evaluating 15000 times expressions (17) and (18). This is the reason why we do not use
WinBUGS, because although feasible, it is really slow.
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An obvious (but naive) option would be to consider fewer points over the surface to
predict, and a small random sample from the posterior distribution. However, this option
would produce posterior predictive distributions with lower resolution and, therefore, the
resulting predictive maps would have no practical interest. Other options would be to
use the spatial-temporal modelling R library spBayes (Finley et al., 2015), or to directly
implement equations (15) and (16) using programming languages such as the R matrix
computation language (Bates and Maechler, 2015); C++ via the interface package Rcpp
to connect with R (Eddelbuettel et al., 2011); or directly C++ (Sanderson, 2010).

Our approach is to use intensive computation techniques such as parallel computa-
tion (Adams et al., 1996; Blackford et al., 1997; Rosenthal, 2000; Rossini, Tierney and
Li, 2007; Whiley and Wilson, 2004), that allow us to increase the performance when
doing matrix calculations, and therefore, work with a large number of new locations to
predict with all the samples previously obtained by simulation from the posterior dis-
tribution using WinBUGS. Nevertheless, as stated by Golub and Van Loan (1996) and
Cuenca, Giménez and Gonzdlez (2004), the use of parallel computation is convenient
only if computational times are substantially reduced.

In this study we use C language to program the prediction equations, and then the
ScalLAPACK and PLAPACK libraries to perform the linear algebra calculations needed
to obtain the mean vector and variance-covariance matrix. Interestingly, with this par-
allelisation of the algorithm for generating a multivariate normal sample, we reduce
the computation time by close to 80% compared to other options such as spBayes and
similar R packages.

Graphical representation of the posterior predictive distributions of Bioclimatic indices

Having obtained the posterior predictive distribution of the indices, our final task is to
represent these distributions throughout the area of interest in order to obtain a good
visualisation of their behaviour in the area. We present two different representations of
these predictive distributions, the first one being the mean and the standard deviation of
the posterior predictive distribution, and the second one, the probability distribution of
each bioclimatic index belonging to different bioclimates.

To obtain the map of the mean (similarly the map of standard deviation), we use
multilevel B-splines Approximation (Lee, 1997) to interpolate the values of the mean
(the standard deviation) of the bioclimatic indices over the whole area using the obtained
values of the posterior mean (standard deviation) predictive distribution on the predicted
locations.

Although the mean and the standard deviation reflect most of the information about
the posterior predictive distributions, the most valuable information we can get from
these distributions comes from the way that they can show us the probability of each
location belonging to the different bioclimates. Indeed Rivas-Martinez’s bioclimatic
classification system uses different ranges of the bioclimatic indices to classify the dif-
ferent bioclimates. For example, the Continentality Index ranks the climate in three
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types, namely, Hyperoceanic (CI € [0, 11[), Oceanic (CI € [11,21]), and Continental
(CI € [22,65]). Note that representing the probability of the predictive distribution of
belonging to each of these ranges can be very relevant for studying changes in vegeta-
tion zones, climate change advances, and many other climatic issues that could provide
valuable information for the management and use of land in the area under study.

Obtaining this probability is straightforward using the simulated values of the predic-
tive distribution. If a bioclimatic index Y is defined in / disjoint intervals R, Ry, ... ,R;
that describe / bioclimates, and {r};_, represents a sample from the posterior predic-
tive distribution for each location in {sx};.,, then the posterior probability that each
location belongs to each interval constituting the index is given by:

PY(5t) €R;) = [ [ oY (5)1¥o,Xp. B.E ,0,)p(B.E w0, vI¥ X)(B.E ., V)aY (5

~ #{rikGRj}
~ , s

j:17'7lak:1a'7m' (19)

The result is a discrete probability distribution for each location that we call the
spatial bioclimatic probability distribution. Note that the best way to represent this dis-
tribution is by presenting a single figure made up of different graphs, each one showing
the probability of belonging to each bioclimate (see Figure 4 for an example).

The representation of each probability can be seen as a puzzle of pieces that fit by
overlapping and provide the distribution boundaries between the types of bioclimates
for each index. These boundaries are highly relevant because they determine the areas
that could be about to change in the near future (caused for example by a slight change
in climatic parameters). This representation is therefore critical in studies about climate
change and its effects on the vegetation of a region.

5. Bioclimatic classification of the island of Cyprus

We illustrate the usefulness of the approach presented here through an application to
analyse two bioclimatic indices (Ombrothermic Index and Thermicity Index) on the
island of Cyprus with the final aim of showing its bioclimatic classification.

Cyprus is an island country in the Eastern Mediterranean. It is the third largest and
the third most populous island in all the Mediterranean. Some of its geographical charac-
teristics are as follows: it measures 240 kilometres (149 miles) long and 100 kilometres
(62 miles) wide at its widest point; it lies between latitudes 34° and 36° N, and longi-
tudes 32° and 35° E. Cyprus is dominated by two mountain systems, the Troodos and
the Kyrenia Mountains, between which lies a central plateau, the Mesaoria.

The information gathered to create the bioclimatic classification of the island con-
sisted of the geographical location, the altitude and the values of the two bioclimatic
indices from 59 meteorological stations across the island, together with the geographi-
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Figure 1: Upper left: geographical location of observed and predicted sites in the Cyprus island. Black
triangles represent the 59 meteorological stations (observed locations), while red points represent the 755
locations where prediction had to be performed. Upper right: contour map of the island. Lower left: ther-
micity and altitude relationship. Lower right: Log(Ombrothermic index) and altitude relationship.

cal location and altitude of other 775 locations (used to predict the indices), in particular,
the ones that the geographical map of the island provides. Figure 1 shows the geograph-
ical location of observed and predicted sites, jointly with the contour map of the island
and the relationship between both indices and the altitude. It is worth mentioning that
these two indices are not related, as can be seen in the left side of Figure 2. This allows
us to analyse both indices independently. If the indices were related, a joint modelling
would be necessary (see the right side of Figure 2 for an example of two related indices,
namely the ombrothermic and continentality indices).

5.1. Ombrothermic Index

We first present the results obtained when analysing the Ombrothermic Index (using
the logarithm transformation to improve its linear relationship with altitude). Table 2
presents the median of the posterior distribution of the parameters of the model in equa-
tion (13) along with their corresponding 95% credible intervals. These posterior distri-
butions were obtained by simulation using WinBUGS (Lunn et al., 2000). Each posterior
distribution was approximated from 15000 (5000 from each of three simulation chains)
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Figure2: Relationship between indices after adjusting linear regression of each index by altitude. Left side,
relationship between residuals of ombrothermic and thermicity indices. Right side, relationship between
residuals of ombrothermic and continentality indices.

Table 2: Median of the posterior distribution and 95% credible intervals
of the parameters for the Ombrothermic Index model.

Parameters Median P25 D975
Bo 528x 107" | 3.63x107! | 6.84x 107!
Bi 7.61x107% | 6.02x107% | 9.12x 10~
&2 480%107% | 237x107% | 1.70x 107!
K 1.03x107!1 | 1.91x107% | 3.83x 107!
5.54% 107 | 2.92x 107 | 9.55%x 107

v 1.48 1.02 1.93

simulated values (obtained after discarding ten thousand simulations from a burn-in
period that guaranteed convergence). As commented above, these posterior distributions
were obtained using the uniform distribution over the standard deviation.

As expected, results for 3; in Table 2 show a positive effect on the altitude. Note also
that the spatial effect is necessary to describe the behaviour of the index, as expressed by
the small value of x (which indicates the small proportion of non-spatial variability with
respect to the total variance). It is also worth noting that the maximum variance (used
in expression (11) to obtain the prior distributions) in Mediterranean bioclimate, 0.515,
does not affect our results. Indeed, this shows that our prior construction methodology
can really be considered as uninformative.

It is worth noting that a sensitivity analysis about the prior selection was performed
for both indices. In particular, we fitted different models using all the different priors
introduced in Table 1. Results indicate that both estimations and credible intervals ob-
tained were similar independently of the priors used.

Figure 3 shows the maps of the mean and standard deviation (as a prediction error
measure) of the posterior predictive distribution of the Ombrothermic Index. As men-
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Figure 3: Mean (left) and standard deviation (right) of the posterior predictive distribution of the Om-
brothermic Index.

tioned above, this predictive distribution was approximated by means of intensive com-
putation techniques that allow us to predict the values of the bioclimatic indices in the
775 unsampled locations.

The mean map clearly reflects the topography of the island, while the standard de-
viation map shows the uncertainty in areas with no data but, more importantly, it also
reflects the areas where the terrain is changing on the island. Note also that the scale
of the observed prediction error is very small compared to the scale of measurement of
the index considered throughout the island. The proposed method is therefore a very
powerful tool for creating the bioclimatic rating of Cyprus based on the Ombrothermic
Index. Note also that the map of the mean is similar that the one we could obtain using
multiple linear regression followed by ordinary kriging of the regression residuals as in
Garzén-Machado et al. (2014), although with our approach we can explore further the
behaviour of the indices.

From a biological point of view, also note that the mean map in Figure 3 also prop-
erly reflects zones with higher altitude (corresponding to larger values of the index),
and those areas with the highest rainfall. Indeed, the predicted map obtained shows the
landscape changes that can be observed in any orthophoto of the island.

Once we have the posterior predictive distribution of the index we can use it to obtain
the maps of the spatial bioclimatic probability distribution introduced in the previous
section. As mentioned above, these maps show the posterior probability of an index
belonging to each subtype.

Figure 4 shows the posterior probability of the nine possible ombrotypes (categories
of the Ombrothermic Index) that can be observed in the Mediterranean bioclimate. The
figure represents the probability of one location on the island belonging to each om-
brotype. Note that in Cyprus the subtypes Hyperhumid, Ultrahyperhumid, Arid, Hyper-
arid and Ultrahyperarid are not possible, while probabilities greater than zero indicate
that Humid and Subhumid are possible at the highest altitudes, and the Dry subtype is
possible on the coast and Semiarid in the north and east.
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Figure 4: Spatial bioclimatic probability distribution of the Ombrothermic Index.

As it can be seen from the figure, there is a high probability of the Humid subtype
being found in the two mountain peaks of the Central mountains and of the Subhumid
subtype occurring in the mountainous area of the central mountains. The Dry subtype
has a high probability of occurring on the hillsides of those peaks and the northern
ridge of the island and finally the Semiarid subtype is likely to be found in the central
plateau. It is worth noting how important these probability distribution maps are from
a biological point of view, as they provide more accurate information on the subtype
boundaries, by using a gradient map showing the border from one subtype to another.

5.2. Thermicity Index

We now show the results for the Thermicity Index in Cyprus. This index presents a
peculiar relationship with the orography, and obviously with the temperature-altitude
pair, i.e., higher altitude is associated with lower temperature.
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Table 3: Median of the posterior distribution and 95% credible intervals
of the parameters for the Thermicity Index model.

Parameters Median P25 D975
Bo 6.10 6.06 6.13
Bi —5.48x107% | —6.04x107% | —4.92x10~*
&2 7.90 x 1073 5.53%x 1073 1.21x1072
3.95x 107! 1.94 x 1072 9.11 x 107!
3.12x 1074 2.52%x 1073 5.40 x 10~
v 0.594 0.0763 1.75
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Figure 5: Mean (left) and standard deviation (right) of the posterior
predictive distribution of the Thermicity Index.

Table 3 shows the median of the posterior distribution of the parameters along with
their corresponding 95% credible intervals for this index. As above, these posterior dis-
tributions were obtained by simulation using WinBUGS, although in this case neither
efficiency (in terms of computational time) nor convergence were as good as for the
Ombrothermic Index (indeed the number of discard simulations needed in the burn-in
was 20000 for this index).

Results for 3 in Table 3 now show a negative effect on the altitude, which corre-
sponds to the effect in climatology known as the mountain-valley wind effect. The value
for x is around 0.395 with a credible interval that nearly covers the whole [0, 1] interval.
This clearly indicates that the model can not distinguish between the spatial and non-
spatial variabilities. The fact that some weather stations present different values even
though they are close to one another, clearly indicates that this index probably does not
have a major spatial effect.

Figure 5 shows the mean and the standard deviation of the posterior predictive distri-
bution of the parameters for the Thermicity Index model. The mean map clearly shows
the island’s mountain system, which is a real factor in explaining the variability for the
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Figure 6: Spatial bioclimatic probability distribution of the Thermicity Index.

Thermicity Index, as mentioned previously. Figure 5 also shows the differences between
the south and the north of the island and the two principal mountains.

Figure 6 shows the spatial bioclimatic probability distribution of the four possible
thermotypes that can be observed in the Mediterranean bioclimate. As can be appreci-
ated from the figure, there is a strong relationship between altitude and thermicity. The
Supramediterranean subtype is very likely to be found at the highest locations, while
on the hillsides there is a high probability the Mesomediterranean thermotype. Finally,
there is a high probability of the ombrotype for the rest of the island beinf Thermo-
mediteranean. Again, this map could be very helpful for landscape management, as it
illustrates the vegetation frontiers, due to the close relationship between thermicity and
vegetation.
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6. Conclusions

In this study, we have introduced a hierarchical Bayesian model that allows us to ob-
tain the spatial distribution of bioclimatic indices by incorporating the altitude and spa-
tial features of each sampled location. Two of the most important advantages of the
Bayesian model formulation are that it incorporates parameter uncertainty (both in the
inferential and prediction processes), and also prior information can be easily handled.
In this context, we have shown how to incorporate our prior knowledge about the pa-
rameters via their prior distributions taking into account the particular characteristics of
bioclimatic indices. Interestingly, this approach could be easily extended in other con-
texts. Moreover, sensitivity analysis have shown that there is no dependence on the prior
selected.

Also interest is the usefulness of the two main outcomes of the modelling. Posterior
predictive distributions reflect most of the information about the bioclimates, but the
most valuable information they provide comes from the fact that they inform us of the
probability of each location belonging to the different bioclimates. This is done using
what we have called the spatial bioclimatic probability distributions. These distributions
could be a powerful tool in studies about climate change and its effects on the vegetation
of a region, but also in landscape management, in particular to establish future policies
or future resource management.

This study also explains how to use MCMC methods, in particular WinBUGS, for
the inference in this context, and also how to perform distributed programming for the
prediction, which allows us to reduce the computation time.

Another important issue to be mentioned is that in the case that the two analysed
indices were related, a joint modelling should be used. In our case, as the Thermicity
and Ombrothermic indices are not related there is no need for it, but with other indices
the opposite applies and a joint modelling would be needed.

Finally, it should be noted that all the analytical approaches we used here to docu-
ment the spatial distribution of bioclimatic indices can be applied in any other part of
the world.
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