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Abstract It was observed by Bump et al. that Ehrhart polynomials in a special family
exhibit properties shared by the Riemann ζ function. The constructionwas generalized
byMatsui et al. to a larger family of reflexive polytopes coming from graphs.We prove
several conjectures confirming when such polynomials have zeros on a certain line
in the complex plane. Our main new method is to prove a stronger property called
interlacing.
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1 Introduction

The aim of the article is to investigate relations among three classical mathemati-
cal objects: graphs, polytopes and polynomials. There are known constructions that
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associate to a graph a lattice polytope—the symmetric edge polytope [24,27,28].
Furthermore, to each lattice polytope P one associates the Ehrhart polynomial HP

[8,11,15,31] that computes the number of lattice points in dilations of P . This is also
the Hilbert polynomial of the normal toric variety SpecC[C], where C is the cone
over P [14,32]. Both constructions are briefly recalled in Sect. 2.1.

Furthermore, the roots of Ehrhart polynomials are also an object of intensive studies
[6,9,12,20]. There are many graphs for which these roots have a remarkable property:
They lie on a line R = {z : Re(z) = − 1

2 }. Still, proving that this property holds for
a family of graphs is often very hard. One of the first positive results was the case of
the complete (1, n)-bipartite graphs (trees) proved independently by Kirschenhofer et
al. [23, Thm. 3.4] and by Bump et al. [5, Thm. 4, Thm. 6]. In the former, the authors
studied this family of polynomials in relation to finiteness results on the number of
solutions of diophantine equations and in relation to Meixner polynomials. In the
latter this family of polynomials was studied in the context of the local Riemann
hypothesis. Indeed, while the polynomials f that we associate to trees are symmetric
with respect to R, the polynomials f (−x) appear as Mellin transforms of Laguerre
functions and have properties similar to the Riemann ζ function [5, Ch. 3]. Related
results were obtained by Rodriguez–Villegas, who further speculated about relations
to the Riemann hypothesis [30, Ch. 4]. In fact, the study of functions with similar
properties to ζ (but simpler) and their zero loci goes back to Pólya [29] and some of
his methods apply to particular cases of polynomials we study [5, p. 4,5].

While our methods work easily for trees, they extend to many other classes. Our
new approach is based on the observation that the polynomials we obtain come in
families with roots having stronger properties than just belonging to the line R. Here
we refer to the theory of interlacing polynomials [17], briefly discussed in Sect. 2.2.
This theory has attracted much attention recently since Marcus, Spielman and Srivas-
tava used it to solve the Kadison–Singer problem as well as to show the existence of
bipartite Ramanujan graphs of all degrees [25,26]. It turns out it is also very useful
while studying roots of special Ehrhart polynomials. One of the examples is the fol-
lowing: Consider two polynomials associated to complete bipartite graphs (1, n) and
(1, n + 1). If we go along R, the roots of these two polynomials interchange, i.e. we
never encounter consecutively two roots of one polynomial. The story does not end
with graphs. Indeed, other reflexive polytopes exhibit similar properties. In particular,
among other families, we present proofs for classical root polytopes of type C [1] and
the duals of Stasheff polytopes [18].

Our general method consists of the following steps:

(i) Determine the Ehrhart polynomials for a family of graphs. Here we either rely on
known results, or we apply a Gröbner degeneration of the associated toric algebra
to a monomial ideal, reducing to a combinatorial problem—cf. Proposition 4.4.

(ii) Find recursive formulas for the Hilbert series/Ehrhart polynomials. The recursive
formulas may involve auxiliary polynomials.

(iii) Deduce the interlacing property from the recursive formulas.

Our main results show that:

• The polynomials HKn associated to complete graphs have all roots on R—Corollary
3.8. In particular, [24, Conj. 4.8] holds.
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• HG has all roots on R for any bipartite graph of type (2, n)—Theorem 4.12. In
particular, [24, Conj. 4.7] holds.

• HG has all roots on R for any complete bipartite graph of type (3, n)—Theorem
4.9.

• The polynomials HP associated to classical root polytopes of type C and to dual
Stasheff polytopes have all roots on R.

Note that finding classes of polytopes whose Ehrhart polynomials have all roots on R
was also suggested as an open problem in [11, 2.43].

Apart from alreadymentionedmethods like interlacing polynomials, recursive rela-
tions and Gröbner degenerations, our research also relates to topics like orthogonal
polynomial systems, hypergeometric functions and reflexive polytopes. We strongly
believe that our techniques will be further applied to many other families of polyno-
mials.

2 Preliminaries

2.1 Graphs, polytopes and polynomials

Let us fix a graph G = (V, E) and a lattice Z|V | with basis elements ev for v ∈ V .
The associated lattice polytope PG ⊂ R

|V | is the convex hull of

{ev1 − ev2 : {v1, v2} ∈ E}.

We note that each edge of G corresponds to two vertices of PG , and apart from the
vertices PG contains one more lattice point 0 ∈ Z

|V |. The construction above is
most common when G is an oriented graph. However for nonoriented graphs (or put
differently, for oriented graphs with the property that (v1, v2) ∈ E ⇒ (v2, v1) ∈ E)
we obtain amuchmore symmetric situation. Recall that a lattice polytope P is reflexive
if 0 is its only interior point and the dual polytope P∨ is also integral. Furthermore, it
is terminal if every lattice point on the boundary is a vertex. For (nonoriented) graphs
G the polytope PG is reflexive and terminal [24, Prop. 4.2]. Reflexive polytopes
are very important and appear not only in combinatorics and algebra but also play a
prominent role in algebraic geometry, e.g., through mirror symmetry [3]. In particular,
the associated toric variety is Gorenstein.

Given a lattice polytope P ⊂ R
d we denote by HP its Ehrhart polynomial, i.e.,

HP (s) = |sP ∩ Z
d | for integers s ≥ 1.

If P = PG , to simplify notation we write HG for the associated Ehrhart polynomial.
Furthermore, if G is a complete k-partite graph of type (a1, . . . , ak) ∈ Z

k+, we write
H(a1,...,ak ).

If P is d-dimensional, then HP is of degree d and the Ehrhart series is a rational
function:

HSP (t) =
∑d

i=0 δi t i

(1 − t)d+1 .
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We use similar subscript notation for the Ehrhart series. The sequence (δ0, δ1, . . . , δd)

is called the δ-vector of P . Given a δ-vector for P , the Ehrhart polynomial can be
reconstructed as HP (s) = ∑d

i=0 δi
(s+d−i

d

)
.

We are now ready to see how the duality for reflexive polytopes reflects the sym-
metry properties on the level of algebra.

Proposition 2.1 (cf. [3,19]) Let P be a lattice polytope of dimension d, HP (m) =
admd + ad−1md−1 + · · · + 1 its Ehrhart polynomial and δ(P) = (δ0, δ1, . . . , δd) its
δ-vector. Then the following four conditions are equivalent:

(a) P is a reflexive polytope;
(b) δ(P) is palindromic, i.e., δ j = δd− j for 0 ≤ j ≤ d;
(c) the functional equation HP (m) = (−1)d HP (−m − 1) holds;
(d) dad = 2ad−1.

Property (c) of the previous proposition shows exactly (skew)symmetry around − 1
2 .

In the following we will denote Ra = {z ∈ C : Re(z) = a}. Our goal will be to show
that polynomials we consider are not only symmetric, but have all of their roots on
R− 1

2
. Thus, we will denote R = R− 1

2
.

2.2 Interlacing polynomials

The theory of interlacing polynomials has proved to be very useful in various areas of
mathematics. It was a crucial ingredient for the construction of bipartite Ramanujan
graphs of all degrees [25], the solution of the Kadison–Singer problem [26] as well as
the proof of the Johnson conjectures [4] to name only a few. More related to our work,
recently it was also used for proving the real rootedness of polynomials appearing
as the numerator of certain Hilbert series [21]. For a comprehensive treatment of
interlacing polynomials and their properties we refer to [17].

Definition 2.2 (interlacing) Let L = α + R · β be a line in C with α, β ∈ C and let
f, g ∈ C[x] be univariate polynomials with d = deg f = deg g+1. Assume that both
f and g have all their zeros on L . Letα+t1·β, . . . , α+td ·β andα+s1·β, . . . , α+sd−1·β
with ti , s j ∈ R be the zeros of f and g respectively. We say that f is L-interlaced by
g if (after possibly relabeling) we have

t1 ≤ s1 ≤ t2 ≤ · · · ≤ td−1 ≤ sd−1 ≤ td .

Lemma 2.3 Let L ⊆ C be a line, let f, g1, . . . , gr ∈ C[x] be monic polynomials and
let λ1, . . . , λr ∈ R be nonnegative real numbers. If f is L-interlaced by each gi , then
f is L-interlaced by

λ1g1 + · · · + λr gr .

Proof Apply an affine transformation that sends L to R and use [17, Lem. 1.10]. 
�
Lemma 2.4 Let f, g, h ∈ R[x] be real monic polynomials such that deg f = deg g+
1 = deg h + 2. Assume that there is an identity
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f = (x + a) · g + b · h

for some a, b ∈ R, b < 0. Then the following are equivalent:

(i) f is R-interlaced by g.
(ii) g is R-interlaced by h.

Proof Look at the Sturm sequence associated to f and g, cf. [10, §2.2.2]. 
�

Lemma 2.5 Let f1, f2, f3 ∈ R[x] be real monic polynomials such that deg f1 =
deg f2 + 1 = deg f3 + 2. Assume that there is an identity

f1 = (x + a) · f2 + b · f3

for some a, b ∈ R, b > 0. Furthermore, let

(−1)deg fi fi (x) = fi (2d − x)

for some d ∈ R and i = 1, 2, 3. Then the following are equivalent:

(i) f1 is Rd-interlaced by f2.
(ii) f2 is Rd-interlaced by f3.

If (i) and (i i) are satisfied, then (x − d) f3 Rd-interlaces f1.

Proof First note that we necessarily have a = −d. If we replace x by ix + d and
divide by ideg f1 , we get the first claim from the preceding lemma. In order to prove
the second statement, we compute the next elements of the Sturm sequence:

f2 = (x − d) f3 + b′ f4,
f3 = (x − d) f4 + b′′ f5,

for some monic f4, f5 ∈ R[x] of degree deg f1 − 3 and deg f1 − 4 respectively and
b′, b′′ > 0. From this we get

f1(x + d) = (x2 + b + b′) f3(x + d) − b′b′′ f5(x + d).

After possibly dividing by x we can assume that the polynomials f1(x +d), f3(x +d)

and f5(x + d) are even. Replacing each occurence of x2 by x we get

g1 = (x + b + b′)g3 − b′b′′g5

for some polynomials gi with gi (x2) = fi (x + d). Note that the gi have only real and
nonpositive roots. Thus, by [17, Lem. 1.82] g3 interlaces g1. This implies the claim.


�
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2.3 Orthogonal polynomial sequences

The theory of orthogonal polynomials is a classical topic in mathematics.

Definition 2.6 (positive-definite moment functional, orthogonal polynomial system)
A linear function μ : C[x] → C is called a moment functional. A moment functional
μ is called positive-definite if for any nonzero polynomial f that takes nonnegative
values on R we have μ( f ) ∈ R and μ( f ) > 0. Let us fix a moment functional
μ. A sequence of polynomials { fd}d∈N, where deg fd = d is called an orthogonal
polynomial system (OPS) if μ( fd fe) = 0 if d �= e and μ( fd fe) �= 0 if d = e for all
d, e ∈ N.

Examples for OPS include the Hermite polynomials, the Laguerre polynomials and
the Jacobi polynomials.

Theorem 2.7 (Favard’s Theorem, [13] Ch. I, Thm. 4.1, Thm. 4.4) Let (c j ) j∈N,
(λ j ) j∈N be arbitrary sequences of complex numbers. Let ( f j (x))∞j=−1 be a sequence
of polynomials defined by

f−1(x) = 0, f0(x) = 1,

f j (x) = (x − c j ) f j−1(x) − λ j f j−2(x), for j = 1, 2, . . . .

Then there exists a positive-definite moment functional μ with respect to which f j is
an OPS if and only if c j is real and λ j > 0 for each j . Further, for any positive-definite
moment functional μ there exists a unique monic OPS and it satisfies the recurrence
relation above.

Note that in this caseLemma2.4 implies that every f j has only real roots and is inter-
laced by f j−1. This is also the content of the Separation Theorem, cf. [13, Thm. I.5.3].
This property was used in [5] to show that certain polynomials obtained from the
Mellin transform of Hermite polynomials and polynomials H1,n(−x) obtained from
the Mellin transform of Laguerre polynomials have all their roots on the line R 1

2
.

3 Ehrhart polynomials of reflexive polytopes as orthogonal polynomial
sequences

In this section wewill be interested in sequences of reflexive polytopes (Pj )
∞
j=0 whose

Ehrhart polynomials f j (x) = HPj (x) satisfy a recurrence relation

f j = (a j x + b j ) f j−1 + c j f j−2, for j = 2, 3, . . .

for some a j , b j , c j ∈ Q. Note that by Proposition 2.1 and since the constant term of
every Ehrhart polynomial is equal to one, we can write the relation as

f j = Mj (2x + 1) f j−1 + (1 − Mj ) f j−2, for j = 2, 3, . . .
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for some Mj ∈ Q. If 0 ≤ Mj ≤ 1, then it follows from Lemma 2.5 that every f j
has all its roots on R and is R-interlaced by f j−1 and (x + 1

2 ) f j−2. Of course, the
modified sequence ( f̃ j )∞j=−1 where f̃ j (x) = (−i)d f (ix − 1

2 ) is in that case an OPS.
Note that since it is well-known that 2x + 1 is the unique Ehrhart polynomial of a

reflexive polytope of dimension one and that every two-dimensional reflexive polytope
has the Ehrhart polynomial ax2 + ax + 1, where a ∈ { i2 : i = 3, 4, . . . , 9}, we can
conclude that M2 should be one of 3

8 ,
4
8 , . . . ,

9
8 . In the following examples we will see

that the values 4
8 ,

5
8 ,

6
8 ,

8
8 actually appear. Furthermore, as we will see the polytopes

giving rise to these OPS come in interesting families appearing in different branches
of mathematics.

Conjecture 3.1 There do not exist families of OPS coming from Ehrhart polynomials,
such that M2 = 3

8 or M2 = 7
8 .

Remark 3.2 Wecan confirm this conjecture under the assumption thatMn is a decreas-
ing rational function of n.

Example 3.3 (Cross Polytope) Let Crd be the convex hull of {±ei : 1 ≤ i ≤ d}.
Then Crd is a reflexive polytope of dimension d, called the cross polytope. Its Ehrhart
polynomial can be computed as follows:

HCrd (m) =
d∑

k=0

(
d

k

)(
m + d − k

d

)

.

Moreover, we see that {HCrd (m)}∞d=0 satisfies the recurrence relation

HCrd (m) = 1

d
(2m + 1)HCrd−1(m) + d − 1

d
HCrd−2(m) for all d ≥ 2. (3.1)

In fact, direct computations show the following:

∞∑

m=0

⎛

⎝2m + 1

d

d−1∑

k=0

(
d − 1

k

)(
m + d − 1 − k

d − 1

)

+ d − 1

d

d−2∑

k=0

(
d − 2

k

)(
m + d − 2 − k

d − 2

)
⎞

⎠ tm

= 2t

d
·
(

(1 + t)d−1

(1 − t)d

)′
+ 1

d
· (1 + t)d−1

(1 − t)d
+ d − 1

d
· (1 + t)d−2

(1 − t)d−1
= (1 + t)d

(1 − t)d+1

=
∞∑

m=0

⎛

⎝
d∑

k=0

(
d

k

)(
m + d − k

d

)
⎞

⎠ tm .

Therefore, the Ehrhart polynomial of the cross polytope Crd has all roots on R and
HCrd+1 is R-interlaced by HCrd .

Note that since the zeros of the polynomial
∑d

k=0

(d
k

)
tk = (1+ t)k in t are all −1,

we can also prove that HCrd (m) has the roots on R by applying [30] as mentioned
in the introduction. Moreover, the HCrd (m) coincides with HG for any tree G with
(d + 1) vertices.
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Example 3.4 (Dual of the Stasheff Polytope) Let Std be the convex hull of {±ei :
1 ≤ i ≤ d} ∪ {ei + · · · + e j : 1 ≤ i < j ≤ d}. Then Std is a reflexive polytope
of dimension d. This polytope is the dual polytope of the so-called Stasheff polytope
(associahedron). For more detailed information, see, e.g., [18]. In [2], its Ehrhart
polynomial is calculated as follows:

HStd (m) =
d∑

k=0

1

d + 1

(
d + 1

k + 1

)(
d + 1

k

)(
m + d − k

d

)

.

Similar to Example 3.3, it follows from the direct computations that {HStd (m)}∞d=0
satisfies the recurrence relation

HStd (m) = 2d + 1

d(d + 2)
(2m + 1)HStd−1(m)+ (d − 1)(d + 1)

d(d + 2)
HStd−2(m) for all d ≥ 2.

Therefore, HStd has all roots on R and HStd+1 is R-interlaced by HStd .

Example 3.5 (Classical Root Polytope of Type A) Let Ad be the convex hull of the
root system of type A, i.e., {±ei : 1 ≤ i ≤ d} ∪ {±(ei + · · · + e j ) : 1 ≤ i < j ≤ d}.
Then Ad is a reflexive polytope of dimension d, called the classical root polytope of
type A. For more detailed information, see [1]. Note that the definitions of this paper
and [1] look different, but these are unimodularly equivalent. Its Ehrhart polynomial
is calculated in [7, Thm. 1] and also in [1, Thm. 2] as follows:

HAd (m) =
d∑

k=0

(
d

k

)2(m + d − k

d

)

.

It follows that {HAd (m)}∞d=0 satisfies the recurrence relation

HAd (m) = 2d − 1

d2
(2m + 1)HAd−1(m) + (d − 1)2

d2
HAd−2(m) for all d ≥ 2.

Therefore, HAd has all roots on R and HAd+1 is R-interlaced by HAd .

Example 3.6 (Classical Root Polytope of Type C) Let Cd be the convex hull of the
root system of type C, i.e., {±ei : 1 ≤ i ≤ d} ∪ {±(ei + · · · + e j−1) : 1 ≤ i <

j ≤ d} ∪ {±(2ei + · · · + 2ed−1 + ed) : 1 ≤ i ≤ d − 1}. Then Cd is a reflexive
polytope of dimension d, called the classical root polytope of type C. Formore detailed
information, see [1]. Its Ehrhart polynomial is calculated in [7, Thm. 1] and also in [1,
Thm. 2] as follows:

HCd (m) =
d∑

k=0

(
2d

2k

)(
m + d − k

d

)

.
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It follows that {HCd (m)}∞d=0 satisfies the recurrence relation

HCd (m) = 2

d
(2m + 1)HCd−1(m) + d − 2

d
HCd−2(m) for all d ≥ 2.

We conclude that HCd has all roots on R and HCd+1 is R-interlaced by HCd .

Remark 3.7 Let Bd (resp. Dd ) be the classical root polytope of type B (resp. D) of
dimension d. In [7], Bd and Dd are also discussed. It is proved in [7, Thm. 1] that

HSBd (t) =
∑d

k=0
(2d+1

2k
)
tk − 2dt (1 + t)d−1

(1 − t)d+1
and HSDd (t) =

∑d
k=0

(2d
2k

)
tk − 2dt (1 + t)d−2

(1 − t)d+1
.

Wesee that the δ-vector ofBd is not palindromic, so the roots of HBd are not distributed
symmetrically with respect to R. The δ-vector of Dd is palindromic, so the roots of
HDd are distributed symmetrically with respect to R. However, they do not have to lie
on R. Below we present how the roots of HB6 (on the left) and HD6 (on the right) are
distributed.

As a consequence of Example 3.5, we also obtain the following:

Corollary 3.8 (cf. [24, Conj. 4.8]) For any complete graph Kn, HKn has all roots on
R, i.e., [24, Conj. 4.8] is true.

Proof The classical root polytope of type A, Ad , is unimodularly equivalent to the
symmetric edge polytope of complete graphs. Hence, Example 3.5 directly proves the
assertion. 
�
Remark 3.9 Orthogonal polynomial systems are also studied in relation to hyperge-
ometric functions [22]. We note that the Ehrhart polynomials described in Examples
3.3, 3.4, 3.5 and 3.6 can be presented also in that language:

HCrd (m) =
(
m + d

m

)

2F1(−d,−m;−d − m; 1),

HStd (m) =
(
m + d

m

)

3F2(−d − 1,−d,−m; 2,−d − m; 1),
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HAd (m) =
(
m + d

m

)

3F2(−d,−d,−m; 1,−d − m; 1),

HCd (m) =
(
m+d

m

)

5F4(1/2 − d, 1/2 − d,−d,−d,−m; 1/2, 1/2, 1,−d − m; 1),

where r Fs denotes the hypergeometric function.

4 Ehrhart polynomials and bipartite graphs

As we have seen in the previous section, OPS provide strong methods to prove that
zeros of polynomials lie on R. However, as conjectured, e.g., in [24, Conj. 4.7], there
exist families with roots on R, but not giving rise to OPS. Indeed, one can check that
the polynomials H2,n do not satisfy the recurrence relations in Theorem 2.7. As we
shall see, for this setting, the correct generalization of orthogonal polynomial systems
are interlacing polynomials—cf. Lemmas 4.6, 4.7, 4.8, Theorem 4.9 and Conjecture
4.10.

4.1 Complete bipartite graphs of type (2, n) and (3, n)

In this section we show that the Ehrhart polynomials H2,n and H3,n of the symmetric
edge polytope of the complete bipartite graph of type (2, n) and (3, n) respectively
have all roots on the line R = R− 1

2
.

First, we determine the corresponding Hilbert series. We start by degenerating the
binomial ideal to the monomial one. For any complete bipartite graph Ka,b let us order
the vertices in each part v1 < · · · < va , w1 < · · · < wb and further vi < w j . There
is an induced order on edges: (vi , w j ) < (vi ′ , w j ′) if i < i ′ or i = i ′ and j < j ′,
analogously for the other orientation and (vi , w j ) < (wi ′ , v j ′) for any i, j, i ′, j ′.
Further we declare the unique interior point 0 of the associated polytope Pa,b to be
smaller than any point corresponding to the edges. In the following lemmawe describe
a Gröbner basis for the ideal of interest. For a general reference concerning Gröbner
bases we refer to [32].

Lemma 4.1 The ideal Ia,b with respect to the induced degrevlex order has a quadratic
Gröbner basis corresponding to

(i) (vi , w j )(w j , vi ) − 2 · 0,
(ii) (vi , w j )(w j , vi ′) − (vi , w1)(w1, vi ′), for j �= 1,
(iii) (wi , v j )(v j , wi ′) − (wi , v1)(v1, wi ′), for j �= 1,
(iv) (vi , w j )(vi ′ , w j ′) − (vi , w j ′)(vi ′ , w j ) for i > i ′ and j < j ′,
(v) (wi , v j )(wi ′ , v j ′) − (wi , v j ′)(wi ′ , v j ) for i > i ′ and j < j ′.
The leading terms are presented on the left.

Proof We leave the easy proof as the exercise for the reader. Amore general statement
can be found in [27]. 
�
The previous lemma motivates the following definition.
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Definition 4.2 (correct graph, f (a, b, k)) A directed bipartite graph without any sub-
graphs corresponding to leading terms in Lemma 4.1 is called correct. Let f (a, b, k)
be the number of correct (a, b)-bipartite graphs with exactly k edges (counted with
multiplicities).

By the standard degeneration argument to the initial ideal [16, Thm. 15.26] we obtain:

Corollary 4.3 The Ehrhart polynomial Ha,b evaluated at k counts the number of
(a, b)-bipartite correct graphs with at most k edges (possibly repeated).

Despite this explicit combinatorial description, in generalwe do not knowhow to deter-
mine the Ehrhart polynomial. Still, in specific situations we may find combinatorial
recursive relations and easily prove that a given formula satisfies them.

Proposition 4.4 The Hilbert series for the complete graph bipartite K1,n equals

H S1,n(t) = (1 + t)n

(1 − t)n+1 .

The Hilbert series for the complete bipartite graph K2,n equals

H S2,n(t) = (1 + t)n−1(1 + 2nt + t2)

(1 − t)n+2 .

The Hilbert series for the complete bipartite graph K3,n equals

H S3,n(t) = (1 + t)n−2(1 + 4nt + (3n2 − n + 4)t2 + 4nt3 + t4)

(1 − t)n+3 .

Proof The first part is well known, cf. Example 3.3. The second was stated in [24].
The proof of the third has two steps. In the first we determine a recursive relation

the Ehrhart polynomial must satisfy. In the second we deduce the Hilbert series form
it.

1) Our aim is to find a formula for f (3, n, k). We note that in every correct graph,
any vertex apart from v1 and w1 is either a sink or a source vertex. To simplify the
terminology (e.g., degree of the vertex) we consider the graphs we count as simple
and directed edges as (positively) weighted.

There are f (3, n − 1, k) graphs for which vn is of degree 0.
Consider a correct graph G. By removing vn and edges adjacent to it we obtain a

(3, n − 1)-bipartite correct graph G̃. Let us introduce the notation to count different
types of correct graphs according to whether w3 and w2 are outgoing or incoming.
We denote by fxy(3, n, j) where x, y ∈ {i, o, z} the number of correct (3, n) bipartite
graphs with j edges such that w3 is of type x (i.e. incoming, outgoing or of degree
zero) and w2 is of type y. From now on we count graphs for which vn is not of degree
zero and as both cases are similar we assume it is outgoing. According to the type of
G̃ we sum up:
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(i)
∑k−1

j=0 fi (3, n − 1, j). Here we count graphs for which w3 is incoming in G̃ -
note that in this case the only possibility to obtain G is to add the edge (vn, w3)

(with multiplicity k − j),
(ii)

∑k−1
j=0(k − j + 1) fzi (3, n − 1, j). Here we multiply by (k − j + 1) as we can

distribute the weight (k − j) among the edges (vn, w3) and (vn, w2).
(iii)

∑k−1
j=0 foi (3, n − 1, j)

(iv)
∑k−1

j=0

(k− j+2
2

)
fzz(3, n − 1, j). Here we distribute among all three edges.

(v)
∑k−1

j=0(k − j + 1) fzo(3, n − 1, j)

(vi)
∑k−1

j=0 foo(3, n − 1, j)

(vii)
∑k−1

j=0(k − j + 1) foz(3, n − 1, j)

We obtain the same when vn is incoming, apart from the fact that we have to replace
i and o in all formulas. Summing up all we get

f (3, n, k) = f (3, n − 1, k) +
k−1∑

j=0

(2 f (3, n − 1, j)

+ 3(k − j) f (2, n − 1, j) + (k − j)2 f (1, n − 1, j)).

2) To pass from the recursive relation to the Hilbert series we proceed as follows.
First we note that the Ehrhart polynomial H3,n(i) = ∑i

k=0 f (3, n, k) and equivalently
f (3, n, j) = H3,n( j)−H3,n( j−1). Thus summingup the recursive relationweobtain:

H3,n(i) = H3,n−1(i) +
∑

0≤ j<k≤i

(2 f (3, n − 1, j)

+ 3(k − j) f (2, n − 1, j) + (k − j)2 f (1, n − 1, j))

= −H3,n−1(i) +
i∑

k=0

2H3,n−1(k)

+
i∑

j=0

(
3

2
(i − j + 1)(i − j) f (2, n − 1, j)

+ (i − j)(i − j + 1)(2i − 2 j + 1)

6
f (1, n − 1, j)

)

(4.1)

At this point we could substitute all the values on the right-hand side and conclude.
This however involves a lot of nontrivial computation on binomial coefficients. A
better way is to pass to the Hilbert series. Precisely we multiply both sides of the
equality (4.1) by t i and sum up over all natural i obtaining:

HS3,n(t) = −HS3,n−1(t) + 2
HS3,n−1(t)

1 − t
+ 3t H S2,n−1(t)

(1 − t)2
+ (t2 + t)HS1,n−1(t)

6(1 − t)3

= (1 + t)HS3,n−1(t)

1 − t
+ 3t H S2,n−1(t)

(1 − t)2
+ (t2 + t)HS1,n−1(t)

(1 − t)3
(4.2)
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Here the four Hilbert series in (4.2) (in order) correspond exactly to four terms in the
recursive relation (4.1). Now the claim of the proposition is reduced to verifying that:

1 + 4nt + (3n3 − n + 4)t2 + 4nt3 + t4

= 1 + 4(n − 1)t + (3(n − 1)2 − (n − 1) + 4)t2 + 4(n − 1)t3 + t4

+3t (1 + 2(n − 1)t + t2) + (t2 + t)(1 + t).


�
So far we have used recursive relations to determine Hilbert series. However, it is also
useful to go the other way round and determine further recursive relations using the
known formulas.

Proposition 4.5 The following relations hold:

H2,n(k) = 1

2
(2k + 1)H1,n(k) + 1

2
H1,n−1(k), (4.3)

H2,n(k) = 1

n
(2k + 1)H2,n−1(k) + 1

2n
(nH1,n−1(k) + (n − 2)(2k + 1)H1,n−2(k)),

(4.4)

H3,n+1(k) =
(
3n2 + 13n + 16

4
(
n2 + 5n + 6

) k + 3n2 + 13n + 16

8
(
n2 + 5n + 6

)

)

H2,n+1(k)

+ n3 + 13n2 + 18n

8(n − 1)
(
n2 + 5n + 6

)H2,n(k) + 4n3 + 9n2 − 13n − 32

8(n − 1)
(
n2 + 5n + 6

)H1,n+1(k)

(4.5)

Proof Looking at Ehrhart polynomials it may be surprising that any relations of this
sort hold, as the system of equalities one gets seems overdetermined for large n.
However, after passing to the Hilbert series we see that we only need to present one
low-degree polynomial as a linear combination of other polynomials. Instead of doing
computation by hand one can use Mathematica [33]. First we check the relations 4.3
and 4.4 by subtracting the left hand side from the right hand side. Using simple algebra
relations among polynomials andHilbert series, such as the fact that kH(k) has Hilbert
series t ( d(HS(t))

dt ) we verify that

In: H1[k_,t_]:=((1+t)ˆk)/((1-t)ˆ(k+1))
In: H2[k_,t_]:=(1+t)ˆ(k-1)*(1+2k*t+tˆ2)/(1-t)ˆ(k+2)
In: H3[k_,t_]:=(1+t)ˆ(k-2)*(1+4k*t+(3*kˆ2-k+4)*tˆ2+4k*tˆ3

+tˆ4)/(1-t)ˆ(k+3)
In: Simplify[2*H2[k,t]-(2*t*D[H1[k,t],t]+H1[k,t]

+H1[k- 1,t])]
Out: 0
In: Simplify[k*H2[k,t]-(2*t*D[H2[k-1,t],t]+H2[k-1,t]

+(k/2)*H1[k-1,t]+((k-2)/2)*(2*t*D[H1[k-2,t],t]
+H1[k-2,t]))]
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Out: 0
In: Simplify[H3[k+1,t]-((16+13*k+3*kˆ2)/(4*(6+5*k+kˆ2))

*t*D[H2[k+1,t],t]+
(16+13*k+3*kˆ2)/(8*(6+5*k+kˆ2))*H2[k+1,t]+(18*k+13*kˆ2

+kˆ3)/(8*(k-1)*(6+5*k+kˆ2))*
H2[k,t]+(-32-13*k+9*kˆ2+4*kˆ3)/(8*(k-1)*(6+5*k+kˆ2))

*H1[k+1,t])]
Out: 0

In “Appendix” we show how to not only check the relations, but determine the
coefficients without knowing them. 
�
Lemma 4.6 H1,n has all its roots on R and R-interlaces H1,n+1.

Proof This was shown in Example 3.3. 
�
Lemma 4.7 H2,n has all its roots on R and is R-interlaced by H1,n and (2k +
1)H1,n−1.

Proof This follows from the relation (4.3) and Lemma 2.5. 
�
Lemma 4.8 H2,n interlaces H2,n+1.

Proof Since both H1,n−1 and (2k+1)H1,n−2 interlace H2,n−1, the claim follows from
Lemma 2.3, Lemma 2.5 and relation (4.4). 
�
Theorem 4.9 H3,n has all its roots on R and is interlaced by H2,n.

Proof H2,n+1 is interlaced by H2,n and H1,n+1, so the claim follows from relation
(4.5). 
�

We end this section with the following conjecture which encapsulates many of our
results.

Conjecture 4.10 (i) For any complete k-partite graph G of type (a1, . . . , ak), the
Ehrhart polynomial Ha1,...,ak has roots on R.

(ii) Suppose a1 ≥ · · · ≥ ak. Any two Ehrhart polynomials Ha1,...,ak , Ha1−1,a2,...,ak
R-interlace.

Our results confirm the conjecture for a1 = · · · = ak = 1 and also k = 2, a2 = 1, 2.
Furthermore, numerical experiments suggest that Ha1,...,ak , Ha1−1,a2,...,ak R-interlace
whenever a1 ≥ 2. We have shown this to be true in the cases k = 2 and a1 = 1, 2, 3
and checked for all graphs with at most 10 vertices.

Example 4.11

H3,3(x) = 9

10
x5 + 9

4
x4 + 16

3
x3 + 23

4
x2 + 113

30
x + 1

H3,3,1(x) = 49

60
x6 + 49

20
x5 + 37

6
x4 + 33

4
x3 + 481

60
x2 + 43

10
x + 1
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Their roots are approximately respectively:

{−.5 − 1.7292i}, {−.5 − .6602i}, {−.5}, {−.5 + .6602i}, {−.5 + 1.7292i}
{−.5 − 1.6154i}, {−.5 − 1.0638i}, {−.5 − .2448i},
{−.5 + .2448i}, {−.5 + 1.0638i}, {−.5 + 1.6154i}

and do not R-interlace.

4.2 Bipartite graphs of type (2, n)

By a more careful study of the involved polynomials we will show in this section that
in fact the Ehrhart polynomial of every (not just complete) bipartite graph of type
(2, n) has all roots on R. This will be derived as a special case for a more general
statement for a larger family of polynomials.

Theorem 4.12 Let G be a bipartite graph of type (2, n). Then all roots of HG belong
to R.

For all natural numbers j < d there exists a polynomial Hd
j ∈ R[x] of degree d−1

such that if (1+t) j

(1−t)d
= ∑∞

k=0 hkt
k , then hk = Hd

j (k) for all k ≥ 0. It was shown in [30]
that one has

Hd
j = (x + 1) · · · (x + d − 1 − j) · H̃d

j

for some polynomial H̃d
j ∈ R[x] of degree j all of whose roots α ∈ C satisfy

Re(α) = − d− j
2 .

Remark 4.13 We have

Hd
j (x) =

j∑

i=0

(
j

i

)(
x + d − 1 − i

d − 1

)

=
(
x + d − 1

d − 1

)

2F1(− j,−x; 1 − d − x;−1)

(4.6)

Remark 4.14 The polynomials Hd
j satisfy (−1)d−1Hd

j (x) = Hd
j (−d + j − x).

Lemma 4.15 The polynomials Fd
j (x) = H̃d

j (x − d− j
2 ) satisfy the recursion

Fd
j+2 = (4x2 + 2d j + d − 2 j2 − 3 j − 2) · Fd

j + j ( j − 1)(4x2 − (d − j)2) · Fd
j−2

for j ≥ 2. Furthermore, one has Fd
0 = 1

(d−1)! and Fd
1 = 2x

(d−1)! .

Proof The recursion above is equivalent to the following recursion on the Hd
j :

a j H
d
j+2(x + 1) = b j H

d
j (x) + c j H

d
j−2(x − 1) (4.7)
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where

a j = x(x + 1)(x + d − j − 1)(x + d − j),

b j = x(x + d − j)

(

4

(

x + d − j

2

)2

+ 2d j + d − 2 j2 − 3 j − 2

)

,

c j =
(

4

(

x + d − j

2

)2

− (d − j)2
)

.

Applying the formula for the Hilbert series of Hd
j one can show that both sides of

Equation (4.7) have the same Hilbert series. 
�
It follows from Lemma 4.15 that Fd

j is an even or odd polynomial, depending on

the parity of j . Thus, there are polynomials Ad
k , B

d
k ∈ R[x] of degree k such that

Fd
2k(x) = Ad

k (x
2) and Fd

2k+1(x) = Bd
k (x2) · x .

Lemma 4.16 (i) The polynomial Ad
k has only simple, real and nonpositive roots for

all 0 ≤ 2k ≤ d − 1. Moreover, for 0 ≤ 2k ≤ d − 3 the polynomials Ad
k and Ad

k+1
are coprime and interlace.

(ii) The polynomial Bd
k has only simple, real and nonpositive roots for all 0 ≤ 2k+1 ≤

d−1. Moreover, for 0 ≤ 2k+1 ≤ d−3 the polynomials Bd
k and Bd

k+1 are coprime
and interlace.

Proof We will prove (i). The proof of (i i) is verbatim the same. Since the real part of
all the roots of H̃d

2k is − d− j
2 , the zeros of Fd

2k(x) are located on the imaginary axis.
This implies that the roots of Ad

k must be real and nonpositive. We show the rest of
the claim by induction on k. For k = 0 the statement is obviously true. Assume that
Ad
k−1 and Ad

k are coprime and interlace. Then it is immediate from the identity

Ad
k+1 = (4x + 4dk + d − 8k2 − 6k − 2) · Ad

k + 2k(2k − 1)(4x − (d − 2k)2) · Ad
k−1

that also Ad
k and Ad

k+1 are coprime. But the identity also implies that Ad
k and Ad

k+1
interlace by [17, Lem. 1.82]. 
�

Let d be a positive integer and c ∈ R. In the following we consider the polynomial

Gd
c = Hd

d−3(x) + c · Hd
d−3(x − 1) + Hd

d−3(x − 2) = Hd
d−1(x) + (c − 2)

·Hd
d−3(x − 1).

Lemma 4.17 Let d be a positive odd integer. Then Gd
c (− 1

2 ) = 0 if and only if c =
4d − 6.

Proof Using (4.6) one checks that
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Gd
c

(

−1

2

)

= Hd
d−3

(

−1

2

)

+ c · Hd
d−3

(

−3

2

)

+ Hd
d−3

(

−5

2

)

= �
( d
2 − 1

)

8
√

π
( d−1

2

)!
·((4d − 6) − c).


�
Lemma 4.18 Let d be a positive even integer and let an be the coefficient of the linear
term in Fd

n . For 1 ≤ n ≤ d − 3 odd we have

an+2

an
> −(n + 1)2 + (d − 2)(n + 1) + d.

In particular, ad−1/ad−3 > d.

Proof The proof is by induction on n, with n = 1 following from a3/a1 = 3d − 6 >

3d − 8. Let fn := an+2/an . By Lemma 4.15 we have

fn = −2 + d − 3n + 2dn − 2n2 − n(n − 1)(d − n)2 · f −1
n−2.

By induction we know that

− f −1
n−2 ≥ ((n − 1)2 − (d − 2)(n − 1) − d)−1 = −(n(d − n) + 1)−1.

Hence,

fn ≥ −2 + d − 3n + 2dn − 2n2 − (n − 1)(d − n)
n(d − n)

n(d − n) + 1

≥ −2 + d − 3n + 2dn − 2n2 − (n − 1)(d − n)

= −2 − 4n + 2d + dn − n2 = (−(n + 1)2 + (d − 2)(n + 1) + d) + 1.


�
Lemma 4.19 Let d be a positive even integer. If Gd

c has a double zero at − 1
2 , then

c > 4d + 2.

Proof First note that

Gd
c = Hd

d−1(x) + (c − 2) · Hd
d−3(x − 1) = Fd

d−1

(

x + 1

2

)

+ (c − 2) · x(x + 1)

·Fd
d−3

(

x + 1

2

)

.

This has a double zero at − 1
2 if and only if the linear term of

Fd
d−1(x) + (c − 2) ·

(

x − 1

2

) (

x + 1

2

)

·Fd
d−3(x)
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vanishes. In the notation of the preceding lemma this implies that

c − 2

4
= ad−1

ad−3
> d. 
�

Lemma 4.20 The polynomial Gd
c has degree d − 1 if and only if c �= −2.

Proof The leading coefficient of Hd
j is 2 j

(d−1)! . Thus, the degree drops if and only if

2d−1 + (c − 2) · 2d−3 = 0. 
�
Theorem 4.21 Let d ≥ 3. For every −2 ≤ c ≤ 4d − 6 if d is odd and for every
−2 ≤ c ≤ 4d + 2 if d is even, the polynomial Gd

c has only roots with real part equal
to − 1

2 .

Proof The claim is true for Gd
2 = Hd

d−1 by [30]. Since (−1)d−1Gd
c (x) = Gd

c (1 − x)
the zeros of Gd

c are located symmetrically with respect to R = R 1
2
. Since by Lemma

4.16 the zeros of Hd
d−1 are simple there are real numbers a < b such that 2 ∈ [a, b],

Gd
c has all its zeros on R whenever c ∈ [a, b] and Gd

a and Gd
b have either a multiple

zero or degree less than d − 2. We will show that such a multiple zero must be at − 1
2 .

This will imply the claim by the preceding lemmas.
If d is even, then both Hd

d−1(x) and Hd
d−3(x − 1) have a zero at − 1

2 . In that case
let

f (x) = Hd
d−1(x)

2x + 1
and g(x) = Hd

d−3(x − 1)

2x + 1
.

If d is odd, let f (x) = Hd
d−1(x) and g(x) = Hd

d−3(x − 1). Let α1, . . . , α2k ∈ R
with Im(αi ) < Im(αi+1) for all 1 ≤ i ≤ 2k − 1 be the zeros of f . Two of the
zeros of g are 0 and −1. Let β1, . . . , β2k−2 ∈ R with Im(βi ) < Im(βi+1) for all
1 ≤ i ≤ 2k − 3 be the remaining zeros of g. Since f and g are real polynomials we
have that Im(α2k−i+1) = − Im(αi ) for all 1 ≤ i ≤ k and Im(β2k−i−1) = − Im(βi )

for all 1 ≤ i ≤ k − 1. By Lemma 4.16 we have furthermore

Im(α1) < Im(β1) < Im(α2) < · · · < Im(βk−1) < Im(αk) < 0,

0 < Im(αk+1) < Im(βk) < Im(αk+2) < · · · < Im(β2k−2) < Im(α2k).

Since f and g are coprime, f + (c − 2)g and g are coprime for all c ∈ R. Thus,
for all c ∈ R and 1 ≤ i ≤ k − 2 there are zeros γi , γk+i−1 ∈ L of f + (c − 2)g
with Im(βi ) < Im(γi ) < Im(βi+1) and Im(βk+i−1) < Im(γk+i−1) < Im(βk+i ).
Furthermore, for c > −2 there is one zero of f + (c − 2)g with imaginary part
larger than Im(β2k−2) and with imaginary part smaller than Im(β1). Thus, the only
possibility for Gd

a or Gd
b to have a multilple root is at − 1

2 . 
�

Proof of Theorem 4.12 First note thatH2,n = Gn+2
2n andHS2,n(t) = (1+t)n−1(1+2nt+t2)

(1−t)n+2

-cf. Proposition 4.4. Any bipartite graph G of type (2, n) can be obtained from a
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complete (2,m)-bipartite graph for m ≤ n by adding vertices of degree one. Such
an extension of graphs corresponds to multiplying the Hilbert series by 1+t

1−t . Thus,

HSG(t) = (1+t)n−1(1+2mt+t2)
(1−t)n+2 and the conclusion follows by Theorem 4.21. 
�

Example 4.22 In general not every Ehrhart polynomial coming from a bipartite graph
has its roots on R, e.g., letG be the eight-cycle. The corresponding Ehrhart polynomial
is

HG(x) = 1 + 7

2
x + 175

36
x2 + 161

36
x3 + 35

18
x4 + 35

36
x5 + 7

36
x6 + 1

18
x7.

One checks that there is a root of HG having real part smaller than −1.

5 Dual polytopes: examples

In this section we present various results showing what happens for dual polytopes.
First let us notice that it may happen that a polytope P is reflexive, HP has roots on
R and HP∗ does not have this property.

Example 5.1 Consider Pd to be the convex hull of e1, . . . , ed ,−e1 − · · · − ed . We
have

HSPd (t) =
∑d

i=1 t
i

(1 − t)d+1 .

In particular, all roots of the numerator belong to the unit circle and hence by [30] all
roots of HPd belong to R. On the other hand

HP∗
d
(x) =

(
(d + 1)x + d

d

)

,

as P∗
d , up to a lattice shift, is the (d + 1)st dilation of the standard d-dimensional

simplex.

Example 5.2 The dual Cr∗
d of the cross polytope in Example 3.3 is simply the cube

[−1, 1]d . In particular, HCr∗
d
(x) = (2x + 1)d with all roots equal to − 1

2 .

We finish with an example dual to 3.5. In this case, the Ehrhart polynomials do not
form an OPS. Yet, as we will see the interlacing property holds.

Lemma 5.3 Let A∗
d be the d dimensional dual polytope to the convex hull of the root

system of type A. Then

HA∗
d
(m) =

d∑

i=0

(
d + 1

i

)

mi .

Proof It is enough to prove that f (m) := ∑m
k=1 HA∗

d
(k) = (m + 1)d+1. Consider the

transformation
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t : Zd � (a1, . . . , ad) → (0, a1, a1 + a2, . . . , a1 + a2 + · · · + ad) ∈ {0} × Z
d .

An integral point a belongs to kA∗
d if and only if any two coordinates of t (a) differ (in

absolute value) by at most k, or put differently, the coordinates of t (a) belong to an
interval [a, a+k] for some a ∈ Z. Notice that coordinates of t (a) belongs to an interval
of length b if and only if they belong to k−b+1 intervals of type [a, a+k] for different
a ∈ Z. Thus, summing as multisets all integral points in t (kA∗

d) for k = 0, . . . ,m we
enumerate integral sequences (0, c1, c2, . . . , cd), each one counted that many times
as many intervals [a, a + m] contain all ci ’s. Hence, by double counting and looking
at all possible intervals we obtain

f (m) =
0∑

a=−m

(m + 1)d = (m + 1)d+1. 
�

Corollary 5.4 The Ehrhart polynomial of the dual polytope A∗
d to the convex hull of

the root system of type A has all roots on R. The roots of HA∗
d
and HA∗

d+1
interlace on

R.

Proof By Lemma 5.3 we have HA∗
d
(m) = (m+1)d+1 −md+1. Thus the roots of HA∗

d
are the inverses of the (nonzero) (d + 1)st roots of unity shifted by −1. The line R
is the inverse of the circle of radius one centered at −1. The corollary follows, as dth
and (d + 1)st roots of unity interlace on the unit circle. 
�
We believe that further nice results will be obtained in future for the associahedra and
duals of graph polytopes.

Appendix

We show how to efficiently determine recursive relations on the (most complicated)
example (4.5).

In: Num:=Numerator[Simplify[(a*t*D[H2[k+1,t],t]
+b*H2[k +1,t]+c*H2[k,t]+d*H1[k+1,t])/(H3[k+1,t])]]
In: Num/.t->0
Out: b+c+d
In: (Simplify[(Num-(b+c+d))/t])/.t->0
Out: -2c-b(-2-2k)+2ck+a(5+4k)
In: (Simplify[(((Num-(b+c+d))/t)-(-2c-b(-2-2k)+2ck

+a(5+4k)))/t])/.t->0
Out: -2d+c(2-4k)+a(11+10k+4kˆ2)
In: (Simplify[(((((Num-(b+c+d))/t)-(-2c-b(-2-2k)+2ck

+a(5+4k)))/t)-(-2d+c(2-4k)+a(11+10k+4kˆ2)))/t])/
.t->0

Out: -2c+2ck-b(2+2k)+a(7+6k)
In: Denominator[Simplify[(a*t*D[H2[k+1,t],t]+b*H2[k+1,t]
+c*H2[k,t]+d*H1[k+1,t])/(H3[k+1,t])]]
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Out: 1+4kt+4ktˆ3+tˆ4+3tˆ2-ktˆ2+3kˆ2tˆ2
In: Solve[{b+c+d==1,-2c-b(-2-2k)+2ck+a(5+4k)==4k+4,-2d

+c(2-4k)+a(11+10k+4kˆ2)
==6+5k+3*kˆ2,-2c+2ck-b(2+2k)+a(7+6k)==4k+4,a+d+c-b==1},

{a,b,c,d}]
Out:{{a->-((-16-13k-3kˆ2)/(4(6+5k+kˆ2))),b->-((-16-13k

-3kˆ2)/(8(6+5k+kˆ2))),
c->-((-18k-13kˆ2-kˆ3)/(8(-1+k)(6+5k+kˆ2))),
d->-((32+13k-9kˆ2-4kˆ3)/(8(-1+k)(6+5k+kˆ2)))}}
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