Skip to main content
Log in

Baxter operators and asymptotic representations

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We introduce a category \(\mathcal {O}\) of representations of the elliptic quantum group associated with \(\mathfrak {sl}_2\) with well-behaved q-character theory. We derive separation of variables relations for asymptotic representations in the Grothendieck ring of this category. Baxter Q-operators are obtained as transfer matrices for asymptotic representations and obey TQ-relations as a consequence of the relations in \(K_0(\mathcal {O})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baxter, R.J.: Partition function of the eight-vertex lattice model. Ann. Phys. 70, 193–228 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bazhanov, V., Lukowski, T., Meneghelli, C., Staudacher, M.: A shortcut to the Q-operator. J. Stat. Mech. 1011, P11002 (2010)

    Article  Google Scholar 

  3. Bazhanov, V., Frassek, R., Lukowski, T., Meneghelli, C., Staudacher, M.: Baxter Q-operators and representations of Yangians. Nuclear Phys. B 850(1), 148–174 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bazhanov, V.V., Lukyanov, S.L., Zamolodchikov, A.B.: Integrable structure of conformal field theory. II. Q-operator and DDV equation. Commun. Math. Phys. 190, 247–278 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bazhanov, V.V., Lukyanov, S.L., Zamolodchikov, A.B.: Integrable structure of conformal field theory. III. The Yang–Baxter Relation. Commun. Math. Phys. 200, 297–324 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bethe, H.: Zur Theorie der Metalle. I Eigenwerte und Eigenfunktionen der linearen Atomkette. Zeitschr. für Physik 71, 205–226 (1931)

    Article  MATH  Google Scholar 

  7. Cavalli, A.: On representations of the elliptic quantum group \(E_{\gamma ,\tau }(gl_N)\). Dissertation, ETH Zürich, no. 14187 (2001). doi:10.3929/ethz-a-004232626

  8. Chari, V.: Braid group actions and tensor products. Int. Math. Res. Not. 2002(7), 357–382 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chari, V., Pressley, A.: Quantum affine algebras. Commun. Math. Phys. 142(2), 261–283 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Enriquez, B., Felder, G.: Elliptic quantum groups \(E_{\tau,\eta }(\mathfrak{sl}_2)\) and quasi-Hopf algebras. Commun. Math. Phys. 195(3), 651–689 (1998)

    Article  MATH  Google Scholar 

  11. Etingof, P., Varchenko, A.: Solutions of the quantum dynamical Yang–Baxter equation and dynamical quantum groups. Commun. Math. Phys. 196(3), 591–640 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Feigin, B., Jimbo, M., Miwa, T., Mukhin, E.: Finite type modules and Bethe ansatz for quantum toroidal \(\mathfrak{gl}_1\). (2016). arXiv:1603.02765

  13. Feigin, B., Jimbo, M., Miwa, T., Mukhin, E.: Finite type modules and Bethe ansatz equations. (2016). arXiv:1609.05724

  14. Faddeev, L.D.: How the algebraic Bethe ansatz works for integrable models. Symétries quantiques (Les Houches, 1995), pp. 149–219. North-Holland, Amsterdam (1998)

  15. Felder, G., Varchenko, A.: On representations of the elliptic quantum group \(E_{\tau,\eta }(sl_2)\). Commun. Math. Phys. 181(3), 741–761 (1996)

    Article  MATH  Google Scholar 

  16. Felder, G., Varchenko, A.: Algebraic Bethe ansatz for the elliptic quantum group \(E_{\tau,\eta }(sl_2)\). Nuclear Phys. B 480(1–2), 485–503 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Frassek, R., Szécsényi, I.: Q-operators for the open Heisenberg spin chain. Nuclear Phys. B 901, 229–248 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Frenkel, E., Hernandez, D.: Baxter’s relations and spectra of quantum integrable models. Duke Math. J. 164(12), 2407–2460 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Frenkel, E., Hernandez, D.: Spectra of quantum KdV Hamiltonians, Langlands duality, and affine opers. (2016). arXiv:1606.05301

  20. Frenkel, E., Reshetikhin, N.: The \(q\)-character of representations of quantum affine algebras and deformations of \(\cal{W}\)-algebras, recent developments in quantum affine algebras and related topics. Contemp. Math. 248, 163–205 (1999)

    Article  MATH  Google Scholar 

  21. Galleas, W., Stokman, J.V.: On connection matrices of quantum Knizhnik–Zamolodchikov equations based on Lie super algebras. Adv. Stud. Pure Math. (2015). arXiv:1510.04318

  22. Gautam, S., Toledano Laredo, V.: Yangians, quantum loop algebras and abelian difference equations. J. Am. Math. Soc. 29, 775–824 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hernandez, D.: Representations of quantum affinizations and fusion product. Transform. Groups 10(2), 163–200 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hernandez, D., Jimbo, M.: Asymptotic representations and Drinfeld rational fractions. Compos. Math. 148(5), 1593–1623 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hernandez, D., Leclerc, B.: Cluster algebras and category O for representations of Borel subalgebras of quantum affine algebras. Alg. Number Theory 10(9), 20152052 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jimbo, M., Konno, H., Odake, S., Shiraishi, J.: Quasi-Hopf twistors for elliptic quantum groups. Transform. Groups 4(4), 303–327 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kac, V.: Infinite Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)

  28. Kazhdan, D., Soibelman, Y.: Representations of quantum affine algebras. Sel. Math. New Ser. 1(3), 537–595 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  29. Knight, H.: Spectra of tensor products of finite dimensional representations of Yangians. J. Algebra 174, 187–196 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  30. Konno, H.: Elliptic quantum group \(U_{q, p}(\widehat{\mathfrak{sl}_2})\), Hopf algebroid structure and elliptic hypergeometric series. J. Geom. Phys. 59(11), 1485–1511 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Konno, H.: Elliptic quantum groups \(U_{q,p}(gl_N)\) and \(E_{q,p}(gl_N)\). Adv. Stud. Pure Math. (2016). arXiv:1603.04129

  32. Lieb, E.H.: Residual entropy of square ice. Phys. Rev. 162, 162–172 (1970)

    Article  Google Scholar 

  33. Molev, A.: Finite-dimensional irreducible representations of twisted Yangians. J. Math. Phys. 39(10), 5559–5600 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mukhin, E., Young, C.: Affinization of category \(\cal{O}\) for quantum groups. Trans. Am. Math. Soc. 366(9), 4815–4847 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Takebe, T.: Q-operators for higher spin eight vertex models with an even number of sites. Lett. Math. Phys. 106(3), 319–340 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhang, H.: Fundamental representations of quantum affine superalgebras and \(R\)-matrices. Transform. Groups. (2015). doi:10.1007/s00031-016-9405-6. arXiv:1506.06093

  37. Zhang, H.: Asymptotic representations of quantum affine superalgebras. (2014). arXiv:1410.0837

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Felder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Felder, G., Zhang, H. Baxter operators and asymptotic representations. Sel. Math. New Ser. 23, 2947–2975 (2017). https://doi.org/10.1007/s00029-017-0320-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-017-0320-z

Mathematics Subject Classification

Navigation