Skip to main content
Log in

Generalized Weyl modules, alcove paths and Macdonald polynomials

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

Classical local Weyl modules for a simple Lie algebra are labeled by dominant weights. We generalize the definition to the case of arbitrary weights and study the properties of the generalized modules. We prove that the representation theory of the generalized Weyl modules can be described in terms of the alcove paths and the quantum Bruhat graph. We make use of the Orr–Shimozono formula in order to prove that the \(t=\infty \) specializations of the nonsymmetric Macdonald polynomials are equal to the characters of certain generalized Weyl modules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bourbaki, N.: Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitres IV, V, VI. Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris (1968)

    MATH  Google Scholar 

  2. Brenti, F., Fomin, S., Postnikov, A.: Mixed Bruhat operators and Yang–Baxter equations for Weyl groups. Int. Math. Res. Not. 8, 419–441 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Carter, R.W.: Lie Algebras of Finite and Affine Type. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  4. Chari, V., Ion, B.: BGG reciprocity for current algebras. Compos. Math. 151, 1265–1287 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chari, V., Loktev, S.: Weyl, Demazure and fusion modules for the current algebra of \({\mathfrak{sl}}_{r+1}\). Adv. Math. 207, 928–960 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chari, V., Pressley, A.: Weyl modules for classical and quantum affine algebras, Represent. Represent. Theory 5, 191–223 (2001). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cherednik, I.: Nonsymmetric Macdonald polynomials. IMRN 10, 483–515 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cherednik, I.: Double Affine Hecke Algebras, London Mathematical Society Lecture Note Series, vol. 319. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  9. Cherednik, I., Feigin, E.: Extremal part of the PBW-filtration and E-polynomials. Adv. Math. 282, 220–264 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cherednik, I., Orr, D.: Nonsymmetric difference Whittaker functions. Math. Z. 279(3–4), 879–938 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cherednik, I., Orr, D.: One-dimensional nil-DAHA and Whittaker functions. Transform. Groups 18(1), 23–59 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Feigin, B., Loktev, S.: On Generalized Kostka Polynomials and the Quantum Verlinde rule, Differential Topology, Infinite-Dimensional Lie Algebras, and Applications, American Mathematical Society Translations: Series 2, vol. 194, pp. 61–79. American Mathematical Society, Providence, RI (1999)

  13. Fourier, G., Littelmann, P.: Tensor product structure of affine Demazure modules and limit constructions. Nagoya Math. J. 182, 171–198 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fourier, G., Littelmann, P.: Weyl modules, Demazure modules, KR-modules, crystals, fusion products and limit constructions. Adv. Math. 211(2), 566–593 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Feigin, E., Makedonskyi, I.: Nonsymmetric Macdonald polynomials and PBW filtration: towards the proof of the Cherednik–Orr conjecture. J. Comb. Theory Ser. A 135, 60–84 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Feigin, E., Makedonskyi, I.: Weyl modules for \(osp(1,2)\) and nonsymmetric Macdonald polynomials (2015). arXiv:1507.01362

  17. Gaussent, S., Littelmann, P.: LS galleries, the path model, and MV cycles. Duke Math. J. 127(1), 35–88 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Haiman, M.: Cherednik algebras, Macdonald polynomials and combinatorics. Proceedings of the International Congress of Mathematicians, Madrid, vol. III. pp. 843–872 (2006)

  19. Haiman, M., Haglund, J., Loehr, N.: A combinatorial formula for non-symmetric Macdonald polynomials. Am. J. Math. 130(2), 359–383 (2008)

    Article  MATH  Google Scholar 

  20. Ion, B.: Nonsymmetric Macdonald polynomials and Demazure characters. Duke Math. J. 116(2), 299–318 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Joseph, A. On the Demazure character formula. Ann. Sci. École Norm. Sup. 18(3), 389–419 (1985)

  22. Kac, V.: Infinite Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  23. Knop, F.: Integrality of two variable Kostka functions. Journal fuer die reine und angewandte Mathematik 482, 177–189 (1997)

    MathSciNet  MATH  Google Scholar 

  24. Lam, T., Shimozono, M.: Quantum cohomology of \(G/P\) and homology of affine Grassmannian. Acta Math. 204, 49–90 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lenart, C.: From Macdonald polynomials to a charge statistic beyond type A. J. Comb. Theory Ser. A 119(3), 683–712 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lenart, C., Lubovsky, A.: A uniform realization of the combinatorial \(R\)-matrix (2015). arXiv:1503.01765

  27. Lenart, C., Naito, S., Sagaki, D., Schilling, A., Shimozono, M.: Quantum Lakshmibai–Seshadri paths and root operators. arXiv:1308.3529 (preprint 2013)

  28. Lenart, C., Naito, S., Sagaki, D., Schilling, A., Shimozono, M.: A uniform model for Kirillov–Reshetikhin crystals I: lifting the parabolic quantum Bruhat graph. Int. Math. Res. Not. 2015, 1848–1901 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Lenart, C., Naito, S., Sagaki, D., Schilling, A., Shimozono, M.: A uniform model for Kirillov–Reshetikhin crystals II: Alcove model, path model, and \(P = X\). arXiv:1402.2203 (preprint 2014)

  30. Lenart, C., Postnikov, A.: Affine Weyl groups in K-theory and representation theory. Int. Math. Res. Not. 2007, 1–65 (2007)

    MATH  Google Scholar 

  31. Lenart, C., Naito, S., Sagaki, D., Schilling, A., Shimozono, M.: A uniform model for Kirillov–Reshetikhin crystals III: Nonsymmetric Macdonald polynomials at \(t=0\) and Demazure characters (2015). arXiv:1511.00465

  32. Lusztig, G.: Hecke algebras and Jantzen’s generic decomposition patterns. Adv. Math. 37(2), 121–164 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  33. Macdonald, I.G.: Affine Hecke algebras and orthogonal polynomials, Séminaire Bourbaki, Vol. 1994/95. Astérisque No. 237, Exp. No. 797, 4, 189–207 (1996)

  34. Naito, S., Nomoto, F., Sagaki, D.: An explicit formula for the specialization of nonsymmetric Macdonald polynomials at \(t = \infty \), (2015) arXiv:1511.07005 (to appear in Trans. Amer. Math. Soc)

  35. Naito, S., Sagaki, D.: Demazure submodules of level-zero extremal weight modules and specializations of Macdonald polynomials (2014). arXiv:1404.2436

  36. Naoi, K.: Weyl modules, Demazure modules and finite crystals for non-simply laced type. Adv. Math. 229(2), 875–934 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Opdam, E.: Harmonic analysis for certain representations of graded Hecke algebras. Acta Math. 175(1), 75–121 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  38. Orr, D., Shimozono, M.: Specializations of nonsymmetric Macdonald–Koornwinder polynomials (2013). arXiv:1310.0279

  39. Ram, A., Yip, M.: A combinatorial formula for Macdonald polynomials. Adv. Math. 226(1), 309–331 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. SageMath, Nonsymmetric Macdonald polynomials package by A. Schilling and N. M. Thiery. http://doc.sagemath.org/html/en/reference/combinat/sage/combinat/root_system/non_symmetric_macdonald_polynomials.html (2013)

  41. Sanderson, Y.: On the connection between Macdonald polynomials and Demazure characters. J. Algebr. Comb. 11, 269–275 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeny Feigin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feigin, E., Makedonskyi, I. Generalized Weyl modules, alcove paths and Macdonald polynomials. Sel. Math. New Ser. 23, 2863–2897 (2017). https://doi.org/10.1007/s00029-017-0346-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-017-0346-2

Mathematics Subject Classification

Navigation