Skip to main content
Log in

Higher level vertex operators for \(U_q \left( \widehat{\mathfrak {sl}}_2\right) \)

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We study graded nonlocal \(\underline{\mathsf {q}}\)-vertex algebras and we prove that they can be generated by certain sets of vertex operators. As an application, we consider the family of graded nonlocal \(\underline{\mathsf {q}}\)-vertex algebras \(V_{c,1}\), \(c\ge 1\), associated with the principal subspaces \(W(c\Lambda _0)\) of the integrable highest weight \(U_q (\widehat{\mathfrak {sl}}_2)\)-modules \(L(c\Lambda _0)\). Using quantum integrability, we derive combinatorial bases for \(V_{c,1}\) and compute the corresponding character formulae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, G.E.: Basis partition polynomials, overpartitions and the Rogers–Ramanujan identities. J. Approx. Theory 197, 62–68 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anguelova, I.I., Bergvelt, M.J.: \(H_{D}\)-quantum vertex algebras and bicharacters. Commun. Contemp. Math. 11, 937–991 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bakalov, B., Kac, V.G.: Field algebras. Int. Math. Res. Not. 3, 123–159 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Borcherds, R.E.: Quantum vertex algebras, in: Taniguchi Conference on Mathematics Nara’98, in: Adv. Stud. Pure Math., 31, pp. 51–74. Math. Soc., Japan (2001)

  5. Butorac, M.: Combinatorial bases of principal subspaces for the affine Lie algebra of type \(B_2^{(1)}\). J. Pure Appl. Algebra 218, 424–447 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Butorac, M.: Quasi-particle bases of principal subspaces for the affine Lie algebras of types \(B_{l}^{(1)}\) and \(C_{l}^{(1)}\). Glas. Mat. Ser. III 51, 59–108 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Calinescu, C., Lepowsky, J., Milas, A.: Vertex-algebraic structure of the principal subspaces of certain \(A^{(1)}_{1}\)-modules, I: level one case. Int. J. Math. 19(01), 71–92 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Calinescu, C., Lepowsky, J., Milas, A.: Vertex-algebraic structure of the principal subspaces of certain \(A^{(1)}_{1}\)-modules, II: higher-level case. J. Pure Appl. Algebra 212, 1928–1950 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Calinescu, C., Lepowsky, J., Milas, A.: Vertex-algebraic structure of the principal subspaces of level one modules for the untwisted affine Lie algebras of types A, D, E. J. Algebra 323, 167–192 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Calinescu, C., Lepowsky, J., Milas, A.: Vertex-algebraic structure of the principal subspaces of standard \(A_2^{(2)}\)-modules, I. Int. J. Math. 25(07), 1450063 (2014)

    Article  MATH  Google Scholar 

  11. Ding, J., Feigin, B.: Quantum current operators II. Difference equations of quantum current operators and quantum parafermion construction. Publ. RIMS Kyoto Univ. 33, 285–300 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ding, J., Iohara, K.: Drinfeld comultiplication and vertex operators. J. Geom. Phys. 23, 1–13 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ding, J., Miwa, T.: Quantum current operators—I. Zeros and poles of quantum current operators and the condition of quantum integrability. Publ. RIMS Kyoto Univ. 33, 277–284 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Drinfeld, V.G.: New realization of Yangian and quantized affine algebras. Sov. Math. Dokl. 36, 212–216 (1988)

    Google Scholar 

  15. Etingof, P., Kazhdan, D.: Quantization of Lie bialgebras V. Sel. Math. (New Ser.) 6, 105–130 (2000)

    Article  MATH  Google Scholar 

  16. Feigin, B., Kedem, R., Loktev, S., Miwa, T., Mukhin, E.: Combinatorics of the \(\hat{\mathfrak{sl}}_2\) spaces of coinvariants. Transform. Groups 6, 25–52 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Frenkel, I.B., Jing, N.: Vertex representations of quantum affine algebras. Proc. Natl. Acad. Sci. USA 85, 9373–9377 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  18. Frenkel, E., Reshetikhin, N.: Towards deformed chiral algebras, Quantum Group Symposium, XXI International Colloquium on Group Theoretical Methods in Physics (Goslar, 1996), pp. 27–42, Heron Press, Sofia (1997)

  19. Georgiev, G.: Combinatorial constructions of modules for infinite-dimensional Lie algebras, I. Principal subspace. J. Pure Appl. Algebra 112, 247–286 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 5th edn. Oxford University Press, Oxford (1979)

    MATH  Google Scholar 

  21. Jerković, M., Primc, M.: Quasi-particle fermionic formulas for \((k,3)\)-admissible configurations. Cent. Eur. J. Math. 10, 703–721 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jing, N.: Higher level representations of the quantum affine algebra \(U_q(\hat{\mathfrak{sl}}(2))\). J. Algebra 182, 448–468 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jing, N., Koyama, Y., Misra, K.C.: Level one realizations of quantum affine algebras \(U_{q}(C_{n}^{(1)})\). Sel. Math. (New Ser.) 5, 243–255 (1999)

    Article  MATH  Google Scholar 

  24. Jing, N., Misra, K.C.: Vertex operators of level one \(U_{q}(B_{n}^{(1)})\)-modules. Lett. Math. Phys. 36, 127–143 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kac, V.G.: Infinite-Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  26. Kac, V.G., Cheung, P.: Quantum Calculus. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  27. Kawasetsu, K.: The free generalized vertex algebras and generalized principal subspaces. J. Algebra 444, 20–51 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Koyama, Y.: Staggered polarization of vertex models with \(U_{q}(\tilde{\mathfrak{sl}}_{n})\)-symmetry. Commun. Math. Phys. 164(2), 277–291 (1994)

    Article  MATH  Google Scholar 

  29. Kožić, S.: Principal subspaces for quantum affine algebra \(U_{q}(A_{n}^{(1)})\). J. Pure Appl. Algebra 218, 2119–2148 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kožić, S.: Vertex operators and principal subspaces of level one for \(U_{q}(\widehat{\mathfrak{sl}}_2)\). J. Algebra 455, 251–290 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kožić, S.: A note on the zeroth products of Frenkel–Jing operators. J. Algebra Appl. 16(3), 1750053 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lepowsky, J., Li, H.-S.: Introduction to Vertex Operator Algebras and Their Representations, Progress in Math., vol. 227. Birkhauser, Boston (2004)

  33. Lepowsky, J., Primc, M.: Structure of the standard modules for the affine Lie algebra \(A_{1}^{(1)}\). Contemp. Math. 46. Amer. Math. Soc., Providence (1985)

  34. Li, H.-S.: Nonlocal vertex algebras generated by formal vertex operators. Sel. Math. (New Ser.) 11, 349–397 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, H.-S.: A new construction of vertex algebras and quasi-modules for vertex algebras. Adv. Math. 202, 232–286 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. Li, H.-S.: Quantum vertex \(\mathbb{F}((t))\)-algebras and their modules. J. Algebra 324, 2262–2304 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Li, H.-S.: Quantum vertex algebras and their \(\phi \)-coordinated modules. Commun. Math. Phys. 308, 703–741 (2011)

    Article  Google Scholar 

  38. Meurman, A., Primc, M.: Annihilating ideals of standard modules of \(\mathfrak{sl}(2,\mathbb{C})^{\sim }\) and combinatorial identities. Adv. Math. 64, 177–240 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  39. Meurman, A., Primc, M.: Annihilating fields of standard modules of \(\mathfrak{sl}(2,\mathbb{C})^{\sim }\) and combinatorial identities. Mem. Am. Math. Soc. 137, No. 652 (1999)

  40. Primc, M.: Vertex operator construction of standard modules for \(A_n^{(1)}\). Pac. J. Math. 162, 143–187 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  41. Primc, M.: Basic Representations for classical affine Lie algebras. J. Algebra 228, 1–50 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sadowski, C.: Presentations of the principal subspaces of the higher-level standard \(\widehat{\mathfrak{sl}(3)}\)-modules. J. Pure Appl. Algebra 219, 2300–2345 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sadowski, C.: Principal subspaces of higher-level standard \(\widehat{\mathfrak{sl}(n)}\)-modules. Int. J. Math. 26(08), 1550053 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Stoyanovsky, A.V., Feigin, B.L.: Functional models of the representations of current algebras, and semi-infinite Schubert cells, (Russian) Funktsional. Anal. i Prilozhen. 28(1), 68–90 (1994), 96; translation in Funct. Anal. Appl. 28 (1994), no. 1, 55–72

  45. Trupčević, G.: Combinatorial bases of Feigin–Stoyanovsky’s type subspaces of higher-level standard \(\widetilde{\mathfrak{sl}}(l+1,\mathbb{C})\)-modules. J. Algebra 322, 3744–3774 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank Mirko Primc for his valuable comments on the earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slaven Kožić.

Additional information

The research was supported by the Australian Research Council and partially supported by the Croatian Science Foundation under the Project 2634.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kožić, S. Higher level vertex operators for \(U_q \left( \widehat{\mathfrak {sl}}_2\right) \) . Sel. Math. New Ser. 23, 2397–2436 (2017). https://doi.org/10.1007/s00029-017-0348-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-017-0348-0

Keywords

Mathematics Subject Classification

Navigation