Skip to main content
Log in

Du Val curves and the pointed Brill–Noether Theorem

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We show that a general curve in an explicit class of what we call Du Val pointed curves satisfies the Brill–Noether Theorem for pointed curves. Furthermore, we prove that a generic pencil of Du Val pointed curves is disjoint from all Brill–Noether divisors on the universal curve. This provides explicit examples of smooth pointed curves of arbitrary genus defined over \({\mathbb {Q}}\) which are Brill–Noether general. A similar result is proved for 2-pointed curves as well using explicit curves on elliptic ruled surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arbarello, E.: Weierstrass points and moduli of curves. Compos. Math. 29(3), 325–342 (1973)

    MathSciNet  MATH  Google Scholar 

  2. Arbarello, E., Bruno, A., Farkas, G., Saccà, G.: Explicit Brill–Noether–Petri general curves. Comment. Math. Helv. 91(3), 477–491 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arbarello, E., Bruno, A., Sernesi, E.: On hyperplane sections of K3 surfaces. To Appear in Algebraic Geometry, arXiv:1507.05002

  4. Cukierman, F.: Families of Weierstrass points. Duke Math. J. 58(2), 317–346 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Eisenbud, D., Harris, J.: Limit linear series: basic theory. Invent. Math. 85(2), 337–371 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Eisenbud, D., Harris, J.: The Kodaira dimension of the moduli space of curves of genus \(\ge 23\). Invent. Math. 90(2), 359–387 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Eisenbud, D., Harris, J.: Irreducibility of some families of linear series with Brill–Noether number \(-1\). Ann. Sci. École Norm. Sup. (4) 22(1), 33–53 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Epema, D.H.J.: Surfaces with Canonical Hyperplane Sections, CWI Tract, vol. 1. Stichting Mathematisch Centrum, Centrumvoor Wiskunde en Informatica, Amsterdam (1984)

    MATH  Google Scholar 

  9. Farkas, G.: Syzygies of curves and the effective cone of \(\overline{\cal{M}}_g\). Duke Math. J. 135(1), 53–98 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Farkas, G., Kemeny, M.: The Prym-Green conjecture for curves of odd genus. Preprint

  11. Farkas, G., Kemeny, M.: The Prym-Green conjecture for torsion line bundles of high order. Appear Duke Math. J., arXiv:1509.07162

  12. Farkas, G., Popa, M.: Effective divisors on \(\overline{\cal{M}}_g\), curves on \(K3\) surfaces, and the slope conjecture. J. Algebraic Geom. 14(2), 241–267 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Farkas, G., Tarasca, N.: Pointed castelnuovo numbers. Math. Res. Lett. 23(2), 389–404 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fuentes-Garcia, L., Pedreira, M.: The projective theory of ruled surfaces. Note di Matematica 24, 25–63 (2005)

    MathSciNet  MATH  Google Scholar 

  15. Griffiths, P., Harris, J.: On the variety of special linear systems on a general algebraic curve. Duke Math. J. 47(1), 233–272 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  16. Harris, J., Morrison, I.: Slopes of effective divisors on the moduli space of stable curves. Invent. Math. 99(2), 321–355 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lazarsfeld, R.: Brill–Noether–Petri without degenerations. J. Differ. Geom. 23(3), 299–307 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  18. Osserman, B.: A simple characteristic-free proof of the Brill-Noether theorem. Bull. Braz. Math. Soc. (N.S.) 45(4), 807–818 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Polishchuk, A.: Contracting the Weierstrass locus to a point. arXiv:1611.04243

  20. Treibich, A.: Revêtements tangentiels et condition de Brill-Noether. C. R. Acad. Sci. Paris Sér. I Math. 316(8), 815–817 (1993)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Tarasca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farkas, G., Tarasca, N. Du Val curves and the pointed Brill–Noether Theorem. Sel. Math. New Ser. 23, 2243–2259 (2017). https://doi.org/10.1007/s00029-017-0329-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-017-0329-3

Keywords

Mathematics Subject Classification

Navigation