Skip to main content
Log in

Categorified Young symmetrizers and stable homology of torus links II

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We construct complexes \(P_{1^{n}}\) of Soergel bimodules which categorify the Young idempotents corresponding to one-column partitions. A beautiful recent conjecture (Flag Hilbert schemes, colored projectors and Khovanov–Rozansky homology. arXiv:1608.07308, 2016) of Gorsky–Neguț–Rasmussen relates the Hochschild homology of categorified Young idempotents with the flag Hilbert scheme. We prove this conjecture for \(P_{1^{n}}\) and its twisted variants. We also show that this homology is also a certain limit of Khovanov–Rozansky homologies of torus links. Along the way we obtain several combinatorial results which could be of independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

(k):

Grading shift by k (§2.1)

\(\alpha _i\) :

\(x_i - x_{i+1} = q_{i,i+1}\) (§4.4)

\({\text {Cone}}\) :

Mapping cone (§2.2)

\({\text {deg}}_h\) :

Homological degree (§2.6)

\(\ell \) :

\(\frac{1}{2}n(n-1)\) (§2)

\(\underline{{\text {End}}}(M)\) :

Graded endomorphism ring of M (§2.2)

\({\text {FT}}_n\) :

Rouquier complex of the full-twist braid \({\text {HT}}_n{\text {HT}}_n\) (§3.3)

\({\text {gr}}\) :

Associated graded (§2.6)

\(\mathcal {H}_n\) :

Hecke algebra of \(S_n\) (§2.3)

\({\text {HH}}(M)\) :

\(\bigoplus _{k=0}^\infty {\text {HH}}^k(R;M)\) (§4.1)

\({\text {HH}}^k(R;M)\) :

kth Hochschild cohomology of the (RR)-bimodule M (§4.1)

\({\text {HHH}}\) :

\(H \circ {\text {HH}}\) (§4.1)

\({\text {HHH}}^0\) :

\(H \circ {\text {HH}}^0 = H\circ {\text {Hom}}\) (§4.1)

\({\text {hocolim}}A_k\) :

Homotopy colimit of the direct system \(\{A_k,f_k\}\) (§3.3)

\(\underline{{\text {Hom}}}(C,D)\) :

Bigraded chain complex of bihomogeneous (RR)-chain maps (§4.3)

\(\underline{{\text {Hom}}}(M,N)\) :

Graded space of homogeneous (RR)-bimodule morphisms (§4.3)

\({\text {HT}}_n\) :

Rouquier complex of the half-twist braid \(F_{w_0}\) (§3.3)

\({\text {HT}}_{min}\) :

Minimal complex of \({\text {HT}}_n\) (§3.3)

\(\mathcal {I}\) :

Full subcategory of \(\mathcal {K}^-(\mathbb {S}\mathbf {Bim}_n)\) of chain complexes whose chain bimodules are grading shifts of direct sums of \(B_{w_0}\) (§2.2)

\(\mathcal {I}^\bot \) :

All objects \(C \in \mathcal {K}^-(\mathbb {S}\mathbf {Bim}_n)\) such that \(CB_{w_0} \simeq 0\) (§2.2)

\(\mathcal {J}_k\) :

Full subcategory of \(\mathcal {K}^-(\mathbb {S}\mathbf {Bim}_{n})\) of chain complexes whose chain bimodules are shifts of direct sums of \(R\otimes _{R^{(k)}}R\) (§2.5)

\(\mathcal {K}(\mathcal {A})\) :

Homotopy category of the additive category \(\mathcal {A}\) (§2)

\(\langle k \rangle \) :

Homological degree shift by k (§2.1)

\(\mathcal {P}(M)\) :

Poincaré series of M (§4.4)

\(\partial _i\) :

Divided difference operator \(\partial _i(f) = (f-s(f))/\alpha _i\) (§5.1)

\(\partial _{1,2,\,\ldots \,,n-1}\) :

\(\partial _1 \circ \cdots \circ \partial _{n-1}\) (§5.1)

\(\phi _b, \psi _b\) :

Special quasi-isomorphisms defined in Definition 3.11 (§3.2)

\(P_{1^{n}}\) :

A resolution of R by free graded \(R\otimes _{R^W}R\)-modules (§2.3)

\(P_{1^{n}}^\vee \) :

The dual complex of \(P_{1^{n}}\) (§2.6)

\(\mathbb {S}\mathbf {Bim}_n\) :

Category of Soergel bimodules (§2.1)

\(\sqcup \) :

\(\otimes _{\mathbb {Q}}\) (§2.1)

\(\theta _k\) :

An odd variable of degree \(tq^{-2}\) (§2.4)

\(\tilde{A}_n,\tilde{M}_n\) :

Reduced versions of \(A_n\) and \(M_n\) (See Remark 2.48) (§2.6)

\({\text {Tot}}(P)\) :

Convolution of a sequence of chain complexes (§2.5)

\(\xi _k, \xi _k^\vee \) :

Odd variables of degree \(q^{-2i}a\) and \(q^{2i}a^{-1}\) respectively (§4.1)

\(\mathbf {x}\) :

List of variables \(x_1,\ldots ,x_n\) (§2.1)

\(\mathbf {y}\) :

List of variables \(y_1,\ldots ,y_n\) (§2.1)

\(^\bot \mathcal {I}\) :

All objects \(C \in \mathcal {K}^-(\mathbb {S}\mathbf {Bim}_n)\) such that \(B_{w_0}C \simeq 0\); equivalent to \(\mathcal {I}^\bot \) (§2.2)

\(A_n\) :

Superpolynomial dg-algebra defined in Definition 2.44 (§2.6)

\(a_{ij}\) :

Special polynomials defined in Definition 2.40 (§2.5)

AB :

\(A \otimes _R B\) (§2.1)

\(B_s\) :

Soergel bimodule \(R \otimes _{R^s} R (-1)\) (§2.1)

\(B_{w_0}\) :

Soergel bimodule \(R \otimes _{R^{W} }R(-\ell )\) (§2.1)

\(B_{w_1}\) :

\(R \otimes _{R^{S_{n-1}}} R (-\ell + n -1)\) (§2.1)

C(ij):

C shifted up by i in q-degree and j in homological degree (§4.1)

\(d_A\) :

Differential on \(A_n\) (see Definition 2.44) (§2.6)

\(d_M\) :

Differential on \(A_n\) (see Definition 2.46) (§2.6)

E :

The algebra defined in Definition 4.19 (§4.3)

\(e_k\) :

k-th elementary symmetric polynomial (§2.1)

\(F(\beta )\) :

Alternate notation for \(F_b\) (§3.3)

\(F(\beta )_{min}\) :

Minimal complex of \(F(\beta )\) (§3.3)

\(F_b\) :

Rouquier complex of the braid \(b\in {\text {Br}}_n\) (§3.2)

\(F_s^{\pm }\) :

Rouquier complex of braid generators \(\sigma _s^{\pm 1}\) (§3.2)

\(F_{\underline{w}}^\pm \) :

Rouquier complex of the positive/negative braid lift of \(w\in S_n\) (§3.2)

H :

Homology functor (§2.2)

\(h_k\) :

kth complete symmetric function (§5.1)

\(I_k\) :

Ideal in \(\mathbb {Q}[\mathbf {x},\mathbf {y}]\) generated by \(e_i(\mathbf {x})-e_i(\mathbf {y}) (1 \le i \le k)\) and \(y_i - x_i (k+1 \le i \le n)\) (§2.1)

\(J_w\) :

Ideal generated by differences \(x_{w(i)}-x_i\) for \(1 \le i \le n\) (§4.4)

\(M_n\) :

dg-\(A_n\)-module defined in Definition 2.46 (§2.6)

n :

A fixed positive integer (§2.1)

\(p_T\) :

Young symmetrizer in \(\mathcal {H}_n\) corresponding to the standard Young tableau T (§2.3)

\(p_{ij}\) :

\(y_i-x_j\) (§2.6)

\(q_{ij}\) :

\(x_i-x_j\) (§4.2)

R :

Polynomial ring \(\mathbb {Q}[x_1,\ldots ,x_n]\) (§2.1)

\(R^I\) :

\(R^{S_{n-1}}\) (§5.1)

\(R^s\) :

Polynomials in R fixed by s (§2.1)

\(R^W\) :

Ring of symmetric polynomials (§2.1)

\(R^{S_{n-1}}\) :

Ring of polynomials symmetric in the first \(n-1\) variables (§2.1)

\(R_w\) :

Standard bimodule associated to \(w \in S_n\) (§3.1)

s :

Simple transposition in \(S_n\) (§2.1)

\(u_k\) :

Even variables of degree \(t^2q^{-2k}\) (§2.6)

\(v_{ij}\) :

Formal even variables of degree \(q^2\) for \(1 \le i < j \le n\) (§4.3)

W :

Symmetric group \(S_n\) (§2.1)

\(w(P_{1^{n}})\) :

Twisted projector (§3.1)

w(C):

\(C \otimes _R R_{w^{-1}}\) (§3.1)

\(w_0\) :

Longest word of \(S_n\) (§2.1)

\(w_1\) :

Longest word of \(S_{n-1}\subset S_n\) (§2.1)

\(z_{m,n}\) :

Special polynomials defined in Proposition 5.11 (§5.2)

References

  1. Abel, M., Hogancamp, M.: A categorified projector approach to colored HOMFLYPT homology (2017) (in preparation)

  2. Aiston, A.K., Morton, H.R.: Idempotents of Hecke algebras of type A. J. Knot Theory Ramif. 7(4), 463–487 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Becker, H.: Khovanov–Rozansky homology via Cohen–Macaulay approximations and Soergel bimodules. arXiv:1105.0702

  4. Boyarchenko, M., Drinfeld, V.: Character sheaves on unipotent groups in positive characteristic: foundations. Sel. Math. 20(1), 125–235 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cautis, S.: Clasp technology to knot homology via the affine Grassmannian. arXiv:1207.2074

  6. Cooper, B., Hogancamp, M.: An exceptional collection for Khovanov homology. Algebr. Geom. Topol. 15(5), 2657–2705 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dunfield, N.M., Gukov, S., Rasmussen, J.: The superpolynomial for knot homologies. Exp. Math. 15(2), 129–159 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eisenbud, D.: Homological algebra on a complete intersection, with an application to group representations. Trans. Am. Math. Soc. 260(1), 35–64 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  9. Elias, B., Hogancamp, M.: On the eigendecomposition of categories (2017) (in preparation)

  10. Elias, B., Khovanov, M.: Diagrammatics for Soergel categories. Int. J. Math. Math. Sci. Art. ID 978635, p. 58 (2010)

  11. Elias, B., Krasner, D.: Rouquier complexes are functorial over braid cobordisms. Homol. Homotopy Appl. 12(2), 109–146 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Elias, B., Williamson, G.: Soergel calculus (2013). arXiv:1309.0865

  13. Elias, B., Williamson, G.: The Hodge theory of Soergel bimodules. Ann. Math. (2) 180(3), 1089–1136 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gorsky, E., Neguţ, A., Rasmussen, J.: Flag Hilbert schemes, colored projectors and Khovanov–Rozansky homology (2016). arXiv:1608.07308

  15. Gorsky, E., Oblomkov, A., Rasmussen, J., Shende, V.: Torus knots and the rational DAHA. Duke Math. J. 163(14), 2709–2794 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gukov, S., Stošic, M.: Homological algebra of knots and BPS states. In: Proceedings of the Freedman Fest, vol. 18. Geometry & Topology Monographs, pp. 309–367. Geometry & Topology Publications, Coventry (2012)

  17. Gyoja, M.: A q-analogue of Young symmetrizer. Osaka J. Math. 23(4), 841–852 (1986)

    MathSciNet  MATH  Google Scholar 

  18. Hogancamp, M.: Categorified Young symmetrizers and stable homology of torus links (2015). arXiv:1505.08148

  19. Hogancamp, M.: Idempotents in triangulated monoidal categories (2017). arXiv:1703.01001

  20. Jimbo, M.: A q-difference analogue of U(\(\mathfrak{g}\)) and the Yang–Baxter equation. Lett. Math. Phys. 10(1), 63–69 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  21. Khovanov, M.: A functor-valued invariant of tangles. Algebr. Geom. Topol. 2, 665–741 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Khovanov, M.: Triply-graded link homology and Hochschild homology of Soergel bimodules. Int. J. Math. 18(8), 869–885 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Khovanov, M., Rozansky, L.: Matrix factorizations and link homology. Fundam. Math. 199(1), 1–91 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Macdonald, I.G.: Notes on Schubert Polynomials. Publications du Laboratoire de combinatoire et d’informatique mathématique. Dép. de mathématiques et d’informatique, Université du Québec à Montréal (1991)

  25. Oblomkov, A., Rasmussen, J., Shende, V.: The Hilbert scheme of a plane curve singularity and the HOMFLY homology of its link (2012) arXiv:1201.2115

  26. Queffelec, H., Rose, D.E.V.: The \(\mathfrak{sl}\)n foam 2-category: a combinatorial formulation of Khovanov–Rozansky homology via categorical skew Howe duality. Adv. Math. 302, 1251–1339 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rose, D.E.V.: A categorification of quantum sl3 projectors and the sl3 Reshetikhin–Turaev invariant of tangles. Quantum Topol. 5(1), 1–59 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rouquier, R.: Categorification of sl2 and braid groups. In: de la Pe\(\tilde{\rm n}\)a, J.A., Bautista, R. (eds.) Trends in Representation Theory of Algebras and Related Topics, Vol. 406, pp. 137–167. Contemporary Mathematics American Mathematical Society, Providence, RI (2006)

  29. Rozansky, L.: A categorification of the stable SU(2) Witten–Reshetikhin–Turaev invariant of links in \({\mathbb{S}}^{2}\times {\mathbb{S}}^{1}\) (2010) arXiv:1011.1958

  30. Rozansky, L.: An infinite torus braid yields a categorified Jones–Wenzl projector. Fundam. Math. 225, 305–326 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Stanley, R.: Hilbert functions of graded algebras. Adv. Math. 28, 57–83 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  32. Stošic, M.: Homological thickness and stability of torus knots. Algebr. Geom. Topol. 7, 261–284 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Stroppel, C., Sussan, J.: Categorified Jones–Wenzl Projectors: a comparison (2012). arXiv:1105.3038

  34. Webster, B., Williamson, G.: A geometric construction of colored HOMFLYPT homology (2009). arXiv:0905.0486

  35. Weibel, C.A.: An Introduction to Homological Algebra, vol. 38, Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1994)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Abel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abel, M., Hogancamp, M. Categorified Young symmetrizers and stable homology of torus links II. Sel. Math. New Ser. 23, 1739–1801 (2017). https://doi.org/10.1007/s00029-017-0336-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-017-0336-4

Keywords

Mathematics Subject Classification

Navigation