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Abstract We analyze the effect of taxation in the online sport betting market. A
relevant characteristic of this market is its negligible marginal cost on bet volume.
Taxation can be on gross profit (Gross Profit Tax) or on volume (General BettingDuty).
We model the two most popular online sport betting bets: fixed-odds and spread, as
compared with another traditional sport betting: parimutuel. We characterize the odds
and the bookmaker’s payoff in (strong) subgame perfect equilibrium for each of the
three types of bets under both taxation schemes. The results show that taxation on
gross profit maximizes the utilitarian social welfare. Moreover, the three types of bets
are equivalent when the market is symmetric.

Keywords Taxation · Online betting market · Sport betting · Bookmaker

JEL Classification C72 · D42 · L83

1 Introduction

A remarkable feature of online betting (which includes sports, casino and card games
such as poker) is that their operators require little more than an internet web page to
enter a new market. As opposed to offline operators, they do not need to open physical
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Table 1 Taxation schemes for online sports betting

Country General Betting Duty (GBD) Gross Profits Tax (GPT)

UK 6.75% (until 2001) 15% (since 2001)

Italy 2–5% (general) 20% (spread)

France 8.5% –

Germany 5% 20–80%

Spain 22% (parimutuel) + 0.1% (all) 25% (fixed odds and spread)

selling points. Under an unregulated market, the cost of offering a bet is inelastic with
respect to the bet volume, i.e. the total sum of betting stakes. This is because online
betting users can bet from any internet terminal, even at home. As opposed, offline
betting users need to be physically at a selling point.

Things may be different in a regulated market. Over the last years, many European
countries have been regulating their online betting and gaming sector. However, this
regulation has not been done in a uniform way throughout the different countries.

In general, the basic taxation scheme is based on two types of taxes: the General
Betting Duty (GBD) is levied as a proportion of betting stakes; whereas the Gross
Profits Tax (GPT) is levied as a proportion of the net revenue of the operators.

Some examples: the United Kingdom applied a 6.75% tax on GBD until October
2001, when it was replaced by a 15% tax in GPT (National Audit Office 2005). Italy
applies a 2–5% tax on GBD (Ficom Leisure 2011) for general sport betting and a 20%
tax on GPT for spread bets (PwC 2011). France applies a 8.5% tax on GBD (Global
Betting and Gaming Consultancy 2011) since 2010. In Germany, tax rates largely
depend on the respective federal state, and they vary between 20 and 80% on GPT
plus a 5% federal tax on GBD (Hofmann and Spitz 2015). In 2011, Spanish authorities
approved a law1 that applies a 25% tax on GPT for some types of sports bets and a
22% tax on GBD for others, plus a 0.1% tax on GBD. In Table 1 we summarize the
data.

In the Spanish case, GBD has been the taxation scheme in the most traditional
offline sport betting (la quiniela), which takes a parimutuel structure.

In a parimutuel market, a winning bet pays off a proportional share of the total stake
on all outcomes. However, the most popular online sport operators are specialized in
another two markets: Fixed-odds and spread. In a fixed-odd market, the operator sets
the odds for each possible outcome of the match, and the bettors decide whether they
accept or not these odds. In a spread market, the operator acts as an intermediator
among the users, who bargain the odds.

For sport matches, a bet of 1 monetary unit on a particular team yields a return of
1
π
monetary units in case the team wins the match, and 0 otherwise. In this context, an

odd π ∈ (0, 1) is defined as the probability assigned by the market. Notice that any

1 Ley 13/2011, de 27 de mayo, de regulación del juego (in Spanish). Boletín Oficial del Estado 127, ref.
BOE-A-2011-9280. Available at https://www.boe.es/buscar/pdf/2011/BOE-A-2011-9280-consolidado.
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risk-neutral bettor would find it profitable to bet at odd π when her private probability
estimation is higher than π .

In parimutuel and spread bets, the operator’s profit comes from a commission on
either the amount at risk or the winning amount (typically around 5% in online spread
operators). In fixed-odds bets, the operator’s profit comes from the odds, which should
sum up more than 100%2 for all the possible outcomes of the sport match.3

In this paper, we model the three types of market in a general setting. The regulator
decides on the general taxing scheme (either GBD or GPT) and the operators decide
on their commission (parimutuel and spread operators) or odds (fixed-odds operators).
We assume that the spread betting commission is applied to the winning bets (as it is
typical in online spread operators), whereas commission in parimutuel betting applies
to the total amount (as in the Spanish regulation).

We show that, from the online bettor’s point of view, it is preferable a GPT scheme,
in the following sense: In equilibrium, the odds are not affected by the taxation under
GPT; whereas a GBD scheme would reduce the odds and hence the bettors’ utility.

These results agree with the ones presented by Smith (2000) and Paton et al. (2001,
2002), whom analyse the effect of the different taxation schemes in Australian, UK
and USA betting markets. These results, however, are more focused on offline betting
operators and government revenue. Moreover, they take into account the marginal cost
of each bet. As opposed, we assume that these marginal costs are negligible.

There are other works that focus on parimutuel markets: Ottaviani and Sørensen
(2009) provide a model that explains the empirical evidence of underdogs overbet.
These authors argue that this biasmaybedue to privately informedbettors.As opposed,
we prove (Corollary 1) that the spread bet operator would get a higher profit if the
underdog wins the game.

Other works concentrate on fixed-odd markets. For example, Bag and Saha (2011,
2016) study the externalities due to bribery in sports; and Levitt (2004) argues that the
operators may achieve higher profits by an accurate prediction of the match outcome.

As far as we know, no similar research has been addressed for spread markets.
The rest of the paper is organized as follows. In Sect. 2 we describe the model.

In Sect. 3, we characterize the equilibrium payoffs in each of the markets. In Sect. 4
we provide the main results. In Sect. 5, we study the symmetric case. In Sect. 6, we
present some concluding remarks. Technical proofs are deferred to the “Appendix”.

2 The model

Two teams (home and away) play a competitive sport match; the match being drawn
is not a possibility.

There are three types of agents in the model: A continuum set B of bettors are
interested in betting, but only if the odds are attractive; a finite set K of bookmakers
that offer bets; and a regulator (Government) that decides on taxes.

2 In case the odds summed up less than 100%, it would be possible, by betting an appropriate amount of
money on each possible match outcome, to win a positive amount irrespectively of the final match outcome.
3 The sum of the odds, called overround, provides a way to measure the operator advantage.
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We assume that bettors are risk neutral and try to maximize their expected profit.
Each bettor i ∈ B is characterized by her individual belief (i.e. the probability) xi
that the home team wins (1 − xi is the probability that the away team wins); xi is
distributed following an absolutely continuous cdf with probability density function
f and full support over (0, 1).
The bookmakers, on the other side, also want to maximize their own profit. We

consider two possibilities:

Risk-adverse case: Bookmakers do not have any belief on the true probability for
the home team to win. Hence, it is not possible to estimate an expected profit for
them. Instead, we assume that each bookmaker tries to maximize her monetary
profit under the worst possible outcome of the match.4

Risk-neutral case: Bookmakers have a precise common estimation of the true prob-
ability q ∈ (0, 1) for the home team to win. This estimation may arise from their
own expertise on the sport discipline plus a detailed study of the match, or by a
previous sampling among users with the most accurate bet record, or both. In this
case, we assume that each bookmaker is risk-neutral and tries to maximize her
expected final monetary profit.

In each case, there are three possible types of bookmakers: Fixed-odd bookmakers,
spread bookmakers and parimutuel bookmakers. Fixed-odd bookmakers decide odds
πH , π A ∈ [0, 1] such that any bettor that bets on the home (away) team receives 1

πH −1

( 1
π A − 1) in case of home (away) win, and −1 in case of away (home) win. Spread
bookmakers decide a commission c on the profit of any winning bettor. Parimutuel
bookmakers decide a commission c on the stake of any bettor.

The third type of agent is the regulator, or Government, that looks for the social
welfare via taxes. We consider that the regulator has the same attitude towards risk
as the bookmaker, i.e. risk-adverse when the bookmakers are risk-adverse, and risk-
neutral when the bookmakers are risk-neutral. As a way to measure social welfare, we
consider two criteria: the total tax income and the utilitarian social welfare function.
Our aim is to estimate the optimal tax (GBD and/or GPT) in order to maximize each
of these two criteria.

2.1 The non-cooperative game

Assume the regulator announces a tax, that could be a percentage υ on volume (GBD),
a percentage ρ on gross profit (GPT), or both. The (non-cooperative) game has two
steps:

Step 1 Each bookmaker k ∈ K observes υ and ρ and announces her odds (fixed-odds)
or commission (spread/parimutuel). Let sk denote this choice and let sK = (sk)k∈K .

4 There are other posible decision criteria, as for example the Hurwicz’s rule (see Sect. 6). We study the
maximin case (maximizing profits under the worst case scenario) due to its simplicity.
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Step 2 Each bettor i ∈ B observes sK , and chooses whether to participate or not, and,
in the former case, with which bookmaker and in which team she bets on. Let si (sK )

denote this choice.
For each L ⊆ K , let sL = (sk)k∈L denote a strategy profile for bookmakers in

L . Analogously, for each C ⊆ B, let sC(·) = (si (·))i∈C denote a strategy profile for
bettors in C.

Following Neyman (2002), we assume that, for any bettors’ strategy profile, the
set C of bettors that give any particular signal is always Borel-measurable,5 and we
denote its volume as ‖C‖.

For any set S, we denote as R
S the Euclidean space where the coordinates are

indexed by the elements of S. Given an admissible strategy profile s = (sK , sB(·)), we
denote as u(s) ∈ R

K∪B, or simply u, the final payoff allocation of the noncooperative
game.

2.2 The equilibrium concept

We will work with the standard concept of subgame perfect equilibrium and a natural
extension of it, named bettor-strong subgame perfect equilibrium. Notice that the only
proper subgames arise in Step 2.

Definition 1 A strategy profile s = (sK , sB(·)) is a subgame perfect equilibrium if
two conditions hold:

1. For each i ∈ B, each bookmakers’ strategy profile s̃K and all bettor i’s strategy
s̃i (·),

ui
(

s̃K , s̃i (̃sK ) , sB\{i} (̃sK )
) ≤ ui (̃sK , sB (̃sK )).

2. For each k ∈ K and all bookmaker k’s strategy s̃k ,

uk
(

s̃k, sK\{k}, sB
(

s̃k, sK\{k}
)) ≤ uk (sK , sB (sK )) .

The first part of the definition states that no bettor has incentives to deviate in Step
2, even if the bookmakers did. The second part states that no bookmaker has incentives
to deviate in Step 1.

Subgame perfect equilibria is a standard solution concept. However, we will also
focus on a refinement of it. Notice that one of the assumptions is that each bettor has the
same amount of money to bet. But this is obviously not a realistic assumption. Another
interpretation is that the bettors are in fact minimal bet stakes, or coins, willing to be
spend by the actual users, each of them owning many coins. Hence, it is obvious that
different coins can coordinate their strategies, being held by the same user. Our next
definition of equilibrium allows to capture this coordination. It also covers situations
where the bettors increase their stakes when the bookmaker improves the odds (or
decreases the commission).

5 This is done in order to avoidmeaningless strategies such as, for example, to bet iff xi is a rational number.
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Definition 2 A strategy profile s = (sK , sB(·)) is a bettor-strong subgame perfect
equilibrium if two conditions hold:

1. For each C ⊆ B, all bookmakers’ strategy s̃K and all strategy profile s̃C(·),

ui
(

s̃K , s̃C (̃sK ), sB\C (̃sK )
) ≤ ui (̃sK , sB (̃sK ))

for all i ∈ C.
2. For each k ∈ K and all bookmaker k’s strategy s̃k ,

uk
(

s̃k, sK\{k}, sB
(

s̃k, sK\{k}
)) ≤ uk (sK , sB (sK )) .

The first part of the definition states that no coalition of bettors has incentives
coordinate in order to deviate in Step 2, even if the bookmakers did. The second part
states that no bookmaker has incentives to deviate in Step 1.

3 Characterization of equilibria

In this section, we study the equilibrium payoff in each of the three bet markets and
each attitude towards risk. We distinguish two possible scenarios: The monopolistic
market and the competitive market. We say that the market is monopolistic when there
exists a unique bookmaker. Remarkably, the results change drastically when we add
a second one. In particular, the market becomes competitive with two bookmakers.
There are no further changes in payoffs when adding a third, fourth, an so on. Hence,
we define competitive market as that in which there are more than one bookmaker.

The monopolistic market does not only cover situations where there is an actual
monopoly. The licensees in a particular country are offering bets continuously and
the non-cooperative game that we model can be seen as just a particular instance
of a game that is repeatedly played. As it is well-know from the theory of repeated
games (Aumann and Shapley 1994; Rubinstein 1994; Joosten et al. 2003), almost
any individual rational payoff is supported by subgame perfect equilibria. Hence, the
bookmakers can eventually cooperate, even without forming a cartel, and ending up
offering the bets of the monopolistic market.

3.1 Fixed-odds bookmakers

In the fixed-odd case, each bookmaker k ∈ K chooses odds πH
k and π A

k , i.e. sk =
(

πH
k , π A

k

) ∈ [0, 1]×[0, 1]. Each bettor i ∈ B observes the odds and chooses si (sK ) ∈
{D} ∪ K × {H, A} with the following interpretation:

– If si (sK ) = D, bettor i declines to bet (abstains) and her final payoff is zero.
– If si (sK ) = (k, H), bettor i bets for the home team at odd πH

k and her final payoff
is

ui =
(

1

πH
k

− 1

)

xi + (−1) (1 − xi ) .
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– If si (sK ) = (k, A), bettor i bets for the away team at odd π A
k and her final payoff

is

ui = (−1) xi +
(

1

π A
k

− 1

)

(1 − xi ) .

For each k ∈ K , let

BH
k = {i ∈ B : si (sK ) = (k, H)}

BA
k = {i ∈ B : si (sK ) = (k, A)}

and let hk = ||BH
k || and ak = ||BA

k || be their respective volumes. Then, bookmaker
k’s final payoff is

uk = (1 − ρ)min

{

(1 − υ) (hk + ak) − 1

πH
k

hk, (1 − υ) (hk + ak) − 1

π A
k

ak

}

= (1 − ρ)

(

(1 − υ) (hk + ak) − max

{

1

πH
k

hk,
1

π A
k

ak

})

(1)

in the risk-adverse case and

uk = (1 − ρ)

(

(1 − υ) (hk + ak) − q

πH
k

hk − 1 − q

π A
k

ak

)

= (1 − ρ)

(

1 − υ − q

πH
k

)

hk + (1 − ρ)

(

1 − υ − 1 − q

π A
k

)

ak (2)

in the risk-neutral case.
The next result characterizes the (bettor-strong) subgame perfect equilibrium in the

monopolistic case:

Proposition 1 Given υ and ρ, there exists a (bettor-strong) subgame perfect equilib-
rium in the fixed-odds monopolistic market. In equilibrium, each bettor i ∈ B bets
for the home team if xi > πH , for the away team if xi < 1 − π A, and declines to
bet otherwise, where πH and π A are characterized by the following maximization
problems:

Risk-adverse case:

max

(

1 − υ − 1

πH + π A

)

(

∫ 1

πH
f (t) dt +

∫ 1−π A

0
f (t) dt

)

(3)
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subject to

1

πH

∫ 1

πH
f (t) dt = 1

π A

∫ 1−π A

0
f (t) dt (4)

πH , π A ∈ [0, 1] , πH + π A ≥ 1.

Risk-neutral case:

πH ∈ argmaxπ∈(0,1]
(

1 − υ − q

π

)

∫ 1

π

f (t) dt (5)

π A ∈ argmaxπ∈(0,1]
(

1 − υ − 1 − q

π

) ∫ 1−π

0
f (t) dt. (6)

Proof See “Appendix”. �	
From the previous result, we see that a bookmaker looks to balance the positive

effect of a large volume (given by
∫ 1
πH f (t) dt and

∫ 1−π A

0 f (t) dt) against the negative

effect of a big prize (given by 1
πH

∫ 1
πH f (t) dt = 1

π A

∫ 1−π A

0 f (t) dt in the risk-adverse

case, and by q
π
and 1−q

π
in the risk-neutral case). A large volume is obtained by setting

low πH and low π A. A low prize is obtained by setting high πH and high π A.
The effect of ρ (tax on profit) is irrelevant for the maximization problem. Hence,

the optimal πH
k and π A

k are independent of the chosen ρ. A different issue happens
with υ, which gives less weight to the positive effect of a large volume. This suggests
that the bookmaker would set a higher πH

k (and a higher π A
k ) a larger υ is, which

means that the utility of bettors is reduced.
The next result characterizes the (bettor-strong) subgame perfect equilibrium in the

competitive case:

Proposition 2 Given υ and ρ, there exists a (bettor-strong) subgame perfect equilib-
rium in the fixed-odds competitive market. In equilibrium, the final payoff for each
bookmaker is zero. The optimal odds in equilibrium, πH and π A, are proposed by at
least two bookmakers, who clear the market, and are characterized as follows:

Risk-adverse case: Equation (4) and πH + π A = min
{

2, 1
1−υ

}

.

Risk-neutral case: πH = max
{

1, q
1−υ

}

and π A = max
{

1, 1−q
1−υ

}

.

In equilibrium, each bettor i ∈ B bets for the home team if xi > πH , for the away
team if xi < 1 − π A, and declines to bet otherwise.

Proof See “Appendix”. �	
Again, the effect of ρ (tax on profit) is irrelevant. The optimal πH and π A are

independent of the chosenρ. As opposed, a higherυ increases the overroundπH +π A,
which means that the utility of bettors is reduced.
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3.2 Spread bookmakers

In the spread case, each bookmaker k ∈ K chooses commission ck ∈ (0, 1), i.e.
sk = ck ∈ (0, 1). Each bettor i ∈ B observes sK and chooses si (sK ) ∈ {D} ∪ K ×
{H, A} × (0, 1) with the following interpretation:

– If si (sK ) = D, bettor i declines to bet and her final utility is zero.
– If si (sK ) = (

k, H, πH
)

, bettor i declares that she wants to bet in k for the home
team at odd at most πH .

– If si (sK ) = (

k, A, π A
)

, bettor i declares that she wants to bet in k for the away
team at odd at most π A.

Each bookmaker k ∈ K matches
(

k, H, πH
)

-bettors with
(

k, A, π A
)

-bettors that
satisfy πH ≥ 1 − π A with odds πk , 1 − πk such that: πk ≤ πH and 1 − πk ≤ π A.
The matching is done in such a way that each πk volume of

(

k, H, πH
)

-bettors is
matched with a 1 − πk volume of

(

k, A, π A
)

-bettors. The reason is that, in case
home team wins, a 1− πk volume of money is transferred from

(

k, A, π A
)

-bettors to
(

k, H, πH
)

-bettors, so that each
(

k, H, πH
)

-bettor receives a gross winning (profit +
bet):

1 − πk

πk
+ 1 = 1

πk
≥ 1

πH

hence granting their request to bet for the home team at odd at least πH .
Analogously, in case away team wins, a πk volume of money is transferred from

(

H, πH
)

-bettors to
(

A, π A
)

-bettors, so that each (A, π A)-bettor receives a gross win-
ning (profit + bet):

πk

1 − πk
+ 1 = 1

1 − πk
≥ 1

π A

hence granting their request to bet for the away team at odd at least π A.
Hence, πk is chosen so that

(1 − πk)

∥

∥

∥BH
k ∪ BH

k

∥

∥

∥ ≥ πk

∥

∥

∥BA
k

∥

∥

∥

πk

∥

∥

∥BA
k ∪ BA

k

∥

∥

∥ ≥ (1 − πk)

∥

∥

∥BH
k

∥

∥

∥

where

BH
k =

{

i ∈ B : si =
(

k, H, πH
)

, πH > πk

}

BH
k = {i ∈ B : si = (k, H, πk)}

BA
k =

{

i ∈ B : si =
(

k, A, π A
)

, π A > 1 − πk

}

BA
k = {i ∈ B : si = (k, A, 1 − πk)} .
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If si = (

k, H, πH
)

with πH > πk , bettor i bets in k for the home team at odd π

and her final payoff is

ui = (1 − ck)

(

1

πk
− 1

)

xi + (−1) (1 − xi ) . (7)

If si = (

k, A, π A
)

with π A > 1 − πk , bettor i bets in k for the away team at odd
1 − πk and her final payoff is

ui = (−1) xi + (1 − ck)

(

1

1 − πk
− 1

)

(1 − xi ) . (8)

If si = D, or si = (

k, H, πH
k

)

withπH < πk , or si = (

k, A, π A
)

withπ A < 1−πk ,
bettor i does not bet and her final payoff is zero.

When si = (k, H, πk) or si = (k, A, 1 − πk), we have two cases:

Case 1:

∥

∥

∥BH
k ∪BH

k

∥

∥

∥

πk
≤

∥

∥

∥BA
k ∪BA

k

∥

∥

∥

1−πk
. If si = (k, H, πk), then bettor i bets for the home

team and her final payoff is (7). If si = (k, A, 1 − πk), then bettor i bets in k for the

away team with probability pA = 1−πk
πk

∥

∥

∥BH
k ∪BH

h

∥

∥

∥

∥

∥

∥BA
k

∥

∥

∥

−
∥

∥BA
k

∥

∥

∥

∥

∥BA
k

∥

∥

∥

and her final payoff is

ui =
[

(−1) xi + (1 − ck)

(

1

1 − πk
− 1

)

(1 − xi )

]

pA.

Case 2:

∥

∥

∥BH
k ∪BH

k

∥

∥

∥

πk
≥

∥

∥

∥BA
k ∪BA

k

∥

∥

∥

1−πk
. If si = (k, A, 1 − πk), then bettor i bets in k for

the away team and her final payoff is (8). If si = (k, H, πk), then bettor i bets in k for

the home team with probability pH = πk
1−πk

∥

∥

∥BA
k ∪BA

k

∥

∥

∥

∥

∥

∥BH
k

∥

∥

∥

−
∥

∥BH
k

∥

∥

∥

∥

∥BH
k

∥

∥

∥

and her final payoff is

ui =
[

(1 − ck)

(

1

πk
− 1

)

xi + (−1) (1 − xi )

]

pH .

We describe this protocol in the following examples:

Example 1 Assume f (x) = 1 for all i ∈ B, ‖B‖ = 1 and K = {k} and each bettor
i ∈ B announces (k, H, xi ) if xi > 0.5 and (k, A, 1 − xi ) if xi < 0.5. Under these
bets, πk = 0.5 clears the market, so that the ratio of H -bettors to A-bettors should

be 1. Moreover,
∥

∥BH
k

∥

∥ = ∥

∥BA
k

∥

∥ = 0.5 and
∥

∥

∥BH
k

∥

∥

∥ =
∥

∥

∥BA
k

∥

∥

∥ = 0. Hence, there exists

no excess of H -bettors nor A-bettors. All bettors will be matched. In particular, the
whole 0.5 volume of (k, H, xi )-bettors matches the 0.5 volume of (k, A, xi )-bettors.

Example 2 Assume ‖B‖ = 1 and K = {k} and the bets are D, (k, H, 0.4), (k, H, 0.6),
(k, H, 0.8), (k, A, 0.2), (k, A, 0.4), and (k, A, 0.6) with volumes 0.2, 0.1, 0.3, 0.1,
0.1, 0.1, and 0.1, respectively, as shown in the first two columns of Table 2. Under
these bets, πk = 0.6 clears the market, so that the ratio of H -bettors to A-bettors
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Table 2 Example of a spread
market

Bet Volume Matched

D 0.2 No (abstain)

(H, 0.4) 0.1 No

(H, 0.6) 0.3 67%

(H, 0.8) 0.1 100%

(A, 0.2) 0.1 No

(A, 0.4) 0.1 100%

(A, 0.6) 0.1 100%

Total 1 50%

should be 0.6
1−0.6 = 3

2 . Moreover,
∥

∥BH
k

∥

∥ = 0.1,
∥

∥

∥BH
k

∥

∥

∥ = 0.3,
∥

∥BA
k

∥

∥ = 0.1, and
∥

∥

∥BA
k

∥

∥

∥ = 0.1. Since

∥

∥

∥BH
k ∪BH

k

∥

∥

∥

πk
= 0.4

0.6 > 0.2
0.4 =

∥

∥

∥BA
k ∪BA

k

∥

∥

∥

1−πk
, we are in Case 2 and

there exists an excess of H -bettors that will not be matched. In particular, the whole
0.1 volume of (k, H, 0.8)-bettors matches a 0.2

3 volume of (k, A, 0.6)-bettors; a 0.05
volume of (k, H, 0.6)-bettorsmatches the remaining 0.1

3 volume of (k, A, 0.6)-bettors;
finally, a 0.15 volume of (k, H, 0.6)-bettors matches the remaining 0.1 volume of
(k, A, 0.4)-bettors. The remaining 0.1 volume of (k, H, 0.6)-bettors, the 0.1 volume
of (k, A, 0.2)-bettors, and the 0.1 volume of (k, H, 0.4)-bettors remain unmatched.

We now compute the bookmaker’s payoff. Analogously to the previous subsection,

we denote hk = ∥

∥BH
k

∥

∥, hk =
∥

∥

∥BH
k

∥

∥

∥, ak = ∥

∥BA
k

∥

∥, and ak =
∥

∥

∥BA
k

∥

∥

∥. Now, in case the

home team wins, the monetary transfer from (k, A)-bettors to (k, H)-bettors is

αk =
(

1

πk
− 1

)

(

hk + min {1, pH } hk
)

= 1 − πk

πk
min

{

hk + hk, hk + pHhk
}

= min

{

1 − πk

πk
(hk + hk), ak + ak

}

.

Analogously, in case the away teamwins, themonetary transfer from (k, H)-bettors
to (k, A)-bettors is

βk = min

{

πk

1 − πk
(a + ak), hk + hk

}

.

Then, the total volume is αk + βk and the final payoff for bookmaker k is

uk = (1 − ρ) (min{αk, βk}ck − (αk + βk) υ)
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in the risk-adverse case and

uk = (1 − ρ) ((qαk + (1 − q)βk)) c − (αk + βk) υ)

in the risk-neutral case.
The next result characterizes the bet volume in Step 2 for the spread bets case:

Lemma 1 Given c ∈ [0, 1], the bet volume and odds that clear the market in equilib-
rium in the spread bets market are characterized by:

γ = 1

π

∫ 1

π
1−(1−π)c

f (t) dt = 1

1 − π

∫ (1−c)π
1−πc

0
f (t) dt

π ∈ [0, 1] . (9)

Proof See “Appendix”. �	
It follows from Lemma 1 that, as opposed to fixed-odds, the spread bookmaker are

not indifferent to which teamwill win the match. In fact, the bookmaker would always
prefer the underdog (non-favorite) to win the match, as next result shows:

Corollary 1 Letπ , 1−π be the odds that clear themarket for some spread bookmaker
with nonzero bet volume. Ifπ > 1

2 , then the bookmaker’s ex-post payoff is bigger when
the away team wins. If π < 1

2 , then the bookmaker’s ex-post payoff is bigger when the
home team wins. If π = 1

2 , then the spread bookmaker’s ex-post payoff is independent
of which team wins.

Proof See “Appendix”. �	
Intuitively, the explanation for this result is the following: The spread bookmaker

has only one degree of freedom to modulate the actual thresholds that determine the
bets. She can make the H and A bets volumes simultaneously larger or smaller, but
not individually in order to equalize both scenarios. The worst-case scenario arises
when the favorite team wins. Since commission is applied to prizes, when the favorite
team wins, the bet volume is not high enough to compensate the low prize for winning
a bet.

The next result characterizes the (bettor-strong) subgame perfect equilibria in the
monopolistic case:

Proposition 3 Given υ and ρ, there exists a (bettor-strong) subgame perfect equilib-
riumwith undominated strategies6 in the spread betsmonopolistic game.Moreover, the
commission and odds in equilibrium are characterized by the following maximization
problems:

Risk-adverse case: maxc∈[0,1] (min{1 − π, π}c − υ) γ .
Risk-neutral case: maxc∈[0,1] ((q + π − 2qπ)c − υ) γ .

6 Undominated strategies are required in order to avoid meaningless equilibria of the form “everybody
chooses D”. This refinement is not needed for the bettor-strong subgame pefect equilibrium.
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subject (in both cases) to (9). In equilibrium, each bettor i ∈ B bets for the home team
if xi > π

1−(1−π)c , for the away team if xi <
(1−c)π
1−cπ , and declines to bet otherwise.

Proof See “Appendix”. �	
As c increases, the percentage of winners profits increase too, but this winner profit

decreases because less bettors participate. Hence, the bookmaker looks to balance the
positive effect of a big commission (hence big percentage of winnings) against the
negative effect on the winnings (which decreases with c).

Like fixed-odds bookmakers, the effect of ρ (tax on profit) is irrelevant for the
maximization problem. Hence, the optimal c is independent of the chosen ρ. Again,
a different issue happens with υ, which penalizes the effect of a large volume. Hence,
like fixed-odds, the bookmaker would set a higher c, which means that the utility of
the bettors is reduced.

The next result characterizes the (bettor-strong) subgame perfect equilibria in the
competitive case:

Proposition 4 Given υ and ρ, there exists a (bettor-strong) subgame perfect equilib-
riumwith undominated strategies7 in the spread bets competitive game. In equilibrium,
the final payoff for each bookmaker is zero. The minimal commission, c, clears the
market and is characterized as follows:

Risk-adverse case: c = min
{

1, υ
min{1−π,π}

}

Risk-neutral case: c = min
{

1, υ
q+π−2qπ

}

subject (in both cases) to (9). In equilibrium, c = mink∈K ck, each bettor i ∈ B bets
in k∗ ∈ argmink∈K ck for the home team if xi > π

1−(1−π)c , for the away team if

xi <
(1−c)π
1−cπ , and declines to bet otherwise.

Proof See “Appendix”. �	
Proposition 4 requires either bettor-strong subgame perfect equilibria, or subgame

perfect equilibria with undominated strategies. There are multiple subgame perfect
equilibria with dominated strategies. For example, assume w.l.o.g. 1 ∈ K . Then, for
any c ∈ [0, 1], let π ∈ [0, 1] given by (9), and consider the following strategy profile:
c1 = c and ck = 0 otherwise, and:

– if c̃1 = c, then si (̃cK ) = (1, H, π) for all i ∈ B such that xi > π
1−(1−π)c ,

si (̃cK ) = (1, A, 1 − π) for all i ∈ B such that xi <
(1−c)π
1−cπ , and si (̃cK ) = D

otherwise;
– if c̃1 �= c, then si (̃cK ) = D for all i ∈ B.

This is a subgame perfect equilibrium. In words, it says that all bettors will bet in
1 when c1 = c, even if it has not the lowest commission. If bookmaker 1 deviates,
then all bettors will abstain. Hence, any c ∈ [0, 1] is supported in a subgame perfect
equilibrium.

7 Again, undominated strategies are not required for the bettor-strong subgame equilibrium.
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3.3 Parimutuel bookmakers

In the parimutuel case, each bookmaker k ∈ K chooses commission ck ∈ (0, 1), i.e.
sk = ck ∈ (0, 1). Each bettor i ∈ B observes sK and (simultaneously) chooses si (c) ∈
{D} ∪ K × {H, A} with the following interpretation. Let BH

k = {i ∈ B : si = (k, H)}
and BA

k = {i ∈ B : si = (k, A)}:
– If si (sK ) = D, bettor i declines to bet and her final payoff is zero.
– If

∥

∥BH
k

∥

∥ = 0 or
∥

∥BA
k

∥

∥ = 0, bets are canceled for bookmaker k. The final payoff
is zero for bookmaker k and bettors in BH

k ∪ BA
k .

– If si (sK ) = (k, H), bettor i declares that she wants to bet for the home team in k.
If

∥

∥BH
k

∥

∥ > 0 and
∥

∥BA
k

∥

∥ > 0, her final payoff is:

ui =
∥

∥BH
k ∪ BA

k

∥

∥

∥

∥BH
k

∥

∥

(1 − ck) xi − 1.

– If si (sK ) = (k, A), bettor i declares that she wants to bet for the away team in k.
If

∥

∥BH
k

∥

∥ > 0 and
∥

∥BA
k

∥

∥ > 0, her final payoff is:

ui =
∥

∥BH
k ∪ BA

k

∥

∥

∥

∥BA
k

∥

∥

(1 − ck) (1 − xi ) − 1.

If
∥

∥BH
k

∥

∥ > 0 and
∥

∥BA
k

∥

∥ > 0, bookmaker k’s final payoff is

uk = (1 − ρ)
(∥

∥

∥BH
k ∪ BA

k

∥

∥

∥ ck −
∥

∥

∥BH
k ∪ BA

k

∥

∥

∥υ
)

= (1 − ρ) (ck − υ)

∥

∥

∥BH
k ∪ BA

k

∥

∥

∥ .

Notice that attitude towards risk is irrelevant in the parimutuel case.
The next result characterizes the (bettor-strong) subgame perfect equilibria in the

monopolistic case:

Proposition 5 Given υ and ρ, there exists a unique bettor-strong subgame perfect
equilibrium in the parimutuelmonopolisticmarket,where eachbettor i ∈ B bets for the
home team if xi > πH and for the away team if xi < π A for some thresholdsπH , π A ∈
[0, 1]. Moreover, the commission and thresholds in equilibrium are characterized by
the maximization problem

max
c∈

[

0, 12

]

(c − υ)

(

∫ 1

πH
f (t) dt +

∫ 1−π A

0
f (t) dt

)

(10)
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subject to

1

πH

∫ 1

πH
f (t) dt = 1

π A

∫ 1−π A

0
f (t) dt (11)

πH + π A = 1

1 − c

πH , π A ∈ [0, 1]. (12)

Proof See “Appendix”. �	
Proposition 5 uses bettor-strong subgame perfect equilibria. There are multiple

subgame perfect equilibria, but they will involve an unreasonable coordination among
bettors. For example, assume K = {k}. Then, for any c∗ ∈ [

0, 1
2

]

, consider the
following strategy profile: sk = c∗ and si (̃ck) = D for all i ∈ B when c̃k �= c∗; when
c̃k = c∗, si (̃ck) is defined as in Proposition 5. This is a subgame perfect equilibrium.
Hence, any c ∈ [

0, 1
2

]

is supported in a subgame perfect equilibrium.
The next result characterizes the bettor-strong subgame perfect equilibria in the

competitive case:

Proposition 6 Given υ and ρ, there exists a unique bettor-strong subgame perfect
equilibrium payoff allocation in the parimutuel competitive market. In equilibrium,
the minimum commission is v, offered by at least two bookmakers, each bookmaker
receives zero and each bettor i ∈ B bets for the home team if xi > πH and for the
away team if xi < π A where πH , π A ∈ [0, 1] are characterized by (11) and

πH + π A = min

{

2,
1

1 − υ

}

. (13)

Proof See “Appendix”. �	
Next result follows from Proposition 1, Proposition 2, Proposition 5 and Proposi-

tion 6:

Proposition 7 For any v and ρ, risk-adverse fixed-odds and parimutuel yield the same
payoff allocation in bettor-subgame perfect subgame equilibrium.

Proof See “Appendix”. �	

4 Effect of taxation

We can now state our main results. These results hold for each of the three types of
bookmakers: fixed-odds, spread, and parimutuel. The first proposition is implied by
the results presented in the previous section. It follows from the fact that ρ does not
play any role in the characterization of the equilibria.

Proposition 8 In a monopolistic market, tax on profit (ρ) leaves odds, commissions
and bettors’ utilities unaffected, and decreases linearly the bookmaker’s payoff. The
maximum tax income is achieved for ρ = 1.
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Proof See “Appendix”. �	
The second part of Proposition 8 simply says that the maximum tax income is

achieved when the monopolistic bookmaker is a state-owned company.
As opposed, the role of υ will depend on the particular distribution on the bettors. In

general, one may expect that an increase in υ would decrease the bet volume. Hence,
the maximum utilitarian social welfare should be achieved for υ = 0. We will check
it in a particular example after presenting the main result, which describes the effect
of taxation in competitive markets.

Theorem 1 In a competitive market:

a) Taxes on profit (ρ) leave odds, commissions, tax income, and utilities unaffected.
b) Taxes on volume (υ) increase odds and commission, and reduces the utility of

bettors. The utility of bookmakers remains unaffected.
c) Maximum utilitarian social welfare is achieved for υ = 0.
d) Maximum tax income is achieved for some υ ∈ (

0, 1
2

)

in the risk-adverse case,
and υ ∈ (0,max{q, 1 − q}) in the risk-neutral case.

Proof See “Appendix”. �	
Theorem 1 provides a range of values where the tax income maximizer can be.

The exact value of the maximizing υ will depend on the distribution of bettors given
by f . On the other hand, we have no complete counterpart for Proposition 1 in the
monopolistic case, but we can still figure out how it behaviours for some particular
function f and (for the risk-neutral case) probability q.

For the risk-neutral case, a natural choice for q is the one that agrees with f in the
sense that odds q, 1−q will clear the market with maximum bet volume. Next lemma
characterizes this q, that we denote as q∗.

Lemma 2 There exists a unique q∗ such that odds q∗, 1−q∗ maximize the bet volume,
and it is characterized by

q∗ =
∫ 1

q∗
f (t)dt .

Proof See “Appendix”. �	
For example, when f is symmetric (i.e. f (x) = f (1 − x) for all x ∈ (0, 1)) it is

clear that q∗ = 1
2 . When f (x) = 2x for all x ∈ (0, 1), then q∗ =

√
5−1
2 ≈ 0.618.

As a paradigmatic case, assume the allocation of bettors follows the linear dis-
tribution f (x) = 2x . This distribution represents a match where the home team is
favourite. Despite its simplicity, it is nontrivial to prove the results in Proposition 1 for
the monopolistic market in this particular example. However, a simulation analysis8

shows the following:

8 Tested on a sampling of 1000 instances of υ uniformly distributed on [0, 1] in each market.
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Table 3 Effect of taxation when f (x) = 2x and q =
√
5−1
2

Bookmaker Market Risk Max. income Maximizer

Fixed odds Monopoly Adverse 0.143087 ρ = 100%, υ = 0%

Fixed odds Monopoly Neutral 0.143852 ρ = 100%, υ = 0%

Spread Monopoly Adverse 0.110593 ρ = 100%, υ = 0%

Spread Monopoly Neutral 0.143828 ρ = 100%, υ = 0%

Parimutuel Monopoly – 0.143087 ρ = 100%, υ = 0%

Fixed odds Competition Adverse 0.143087 υ = 25%

Fixed odds Competition Neutral 0.140669 υ = 24%

Spread Competition Adverse 0.110531 υ = 19%

Spread Competition Neutral 0.143828 υ = 25%

Parimutuel Competition – 0.143087 υ = 25%

– Taxes on volume (υ) increase odds and commission, and reduce the utility of both
bettors and bookmaker.

– Maximum utilitarian social welfare is achieved for υ = 0.
– In the monopolistic case, maximum tax income is achieved for ρ = 1 and υ = 0.

The maximum tax income is described in Table 3.
Apart from the risk-adverse spread case, where the bookmaker has no capability

to adjust both equilibrium odds, the maximum tax income is similar in all the other
markets.

5 Effect of taxation in the symmetric case

In this section, we study the effect of taxation in the symmetric case, i.e. when q = 1
2

and f is symmetric:

f (x) = f (1 − x)

for all x ∈ (0, 1).
This case covers situations where there is no favourite team in the sport match, or

when there exists a favourite but it has a handicap that makes the match even. Such
handicap bets are quite common in online betting, and allow the bookmakers to assure
that the volume of bets between home and away teams are balanced. In our model, this
is particularly relevant for the spread bets bookmaker, since it makes her indifferent
of who is the winning team (Corollary 1).

The next result characterizes the equilibrium payoffs and states that fixed odds,
spread bets and parimutuel are equivalent in the symmetric case.

Proposition 9 Assume f (x) = f (1− x) for all x ∈ (0, 1). Then, fixed-odds, spreads
and parimutuel yield the same payoff allocation in equilibrium for both risk-adverse
case and risk-neutral case with q = 1

2 . The optimal odds in the fixed-odds market are
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πH = π A = π∗, the optimal commission in the spread market is c = 2 − 1
π∗ , and

the optimal commission in the parimutuel market is c = 1 − 1
2π∗ , where π∗ is given

as follows:

a) Monopolistic case: π∗ = argmax
π∈

[

1
2 ,1

]

(

2(1 − υ) − 1
π

) ∫ 1
π

f (t)dt.

b) Competitive case: π∗ = min
{

1, 1
2(1−υ)

}

.

Proof See “Appendix”. �	
Theprevious result allowsus to analyse the effect ofρ andυ on theodds/commissions

and the bookmakers’ payoffs for a particular cdf. It is still too general for a character-
ization of the υ that maximizes the tax income. In order to study a relevant example,
consider the symmetric beta distribution. Symmetry means that shape parameters α, β

coincide, α = β. Hence, the symmetric probability density function is given by

f (x) = xα−1(1 − x)α−1

∫ 1
0 tα−1(1 − t)α−1dt

for some α ∈ (0,∞). The beta distribution is a suitable model for a random allocation
of percentages (see Forbes et al. 2011; Ferrari and Cribari-Neto 2004 and references
herein). Hence, it is justifiable to use it for estimating the distribution of bettors’ odds.
Moreover, the family of symmetric beta distributions is rich enough to cover a wide
range of symmetric distributions, including the uniformdistribution (α = 1), unimodal
distributions (α > 1) with a unique central peak, and bimodal distributions (α < 1)
with two peaks at 0 and 1, respectively. The interpretation is that α > 1 describes a
society where bettors agree that the chances of home win is around 1

2 , and α > 1 a
society where bettors are divided half-half between those that believe that the home
team is favorite, and those that believe that away team is favorite.

As a paradigmatic case, next proposition shows the effect of taxes when α = 1, i.e.
the uniform distribution f (x) = 1 for all x ∈ (0, 1).

Proposition 10 Assume f (x) = 1 for all x ∈ (0, 1) and q = 1
2 . Then,

a) Taxes on volume (υ) increase odds and commission, and reduces the utility of
bettors. In a monopolistic market, they also decrease the utility of the bookmaker
when ρ < 1.

b) Maximum utilitarian welfare is achieved for υ = 0.
c) Maximum tax income is achieved as follows:
c1) In the competitive case, by ρ = 1 and υ = 0.

c2) In the monopolistic case, by υ = 2 −
√
2
2 ≈ 29.3%.

Proof See “Appendix”. �	
For arbitrary α ∈ (0,∞), a simulation analysis shows that Proposition 10, parts a),

b) and c1), hold in general, and the maximizing υ in the competitive case [Proposi-
tion 10, part c2)] decreases withα. The υ that maximizes tax income in the competitive
case is represented in Fig. 1.

123



SERIEs (2017) 8:145–175 163
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υ

Fig. 1 Tax on volume (υ) that maximizes tax income in the symmetric (α = β) competitive market. Scale
is linear on α ∈ (0, 1) and logarithmic on α ∈ (1, ∞)

The interpretation is that the more agreement among bettors that the probability of
local is around 0.5, the smaller the optimal tax is. Reciprocally, when bettors disagree
half-half on who the favorite team is, it is easier to extract the utility surplus via taxes.

6 Concluding remarks

In this paper, we model three different online betting markets: those given by fixed-
odds, spread bets, and parimutuel, respectively. This allows us to analyse the effect of
two different tax schemes: On volume (GBD) and on profit (GPT). In all thesemarkets,
odds (fixed-odds) and commission (spread bets and parimutuel) are unaffected by
GPT but they are by GBD. Hence, it should be expected that odds and commission to
depend on the particular regulation. For example, Paddy Power Betfair, which includes
one of the largest Internet spread betting companies, charges a different commission
for spread bets on each country. This commission is 5% in the United Kingdom,
Ireland, Italy, Gibraltar and Malta; 7% in Albany, Armenia, Croatia, Monaco, Serbia,
Montenegro and Slovakia; and 6.5% in the rest of the countries, including Spain.
Moreover, the company is restricted in Belgium, Greece, Germany,9 Turkey, Israel,
France and Portugal, among other countries.

As opposed to other approaches in the literature, we do not need to assume the
existence of an actual probability for the home (or away) team to win the match.
Instead, the bettors are characterized by their subjective beliefs on this probability. An
alternative interpretation is that each bettor is characterized by the the odd at which
she is willing to bet, which includes the individual surplus of the act of betting itself.
In this sense, a natural extension of the model, which does not change the results,
is to assume that there are two subsets of bettors: one of them willing to bet for the
home team, another willing to bet for the away team, and both characterized by the
minimum odd they will bet.

As for the bookmakers, we cover two situations: either they are risk-adverse and
play a maximin strategy (i.e. they maximize profits under the worst match outcome
scenario), or they are risk-neutral because of a precise common estimation of the true
probability of the match outcome. Assuming there is no such precise estimation, a
more general decision criterium than maximin would be the Hurwicz’s rule, which

9 Betfair is only restricted in Germany for spread bets.

123



164 SERIEs (2017) 8:145–175

uses a weighted average between both match outcomes. Checking the implications
of using the Hurwicz’s rule is an open question. My own feeling is that the general
results remain with a more elaborate characterization of the bet volume in equilibrium
(as given by 4).

Another extension is to consider bettors betting on more than one event simulta-
neously. Of course, bettors decisions will become more elaborate when they have a
limited budget and several matches to choose. Competition among different matches
may arise. In fact, this situation is already partially covered by the model, because:
(1) distribution f may depend on the existence of other potential matches, and (2)
bettors’ strategies are not affected when they have no budget restrictions, so that they
are able to bet in all the matches they find profitable.
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Appendix

Proof of Proposition 1 Assume w.l.o.g. ‖B‖ = 1 and K = {k}. In Step 2 of the game,
it is optimal for any bettor i ∈ B with xi > πH

k to announce si
(

πH
k , π A

k

) = (k, H).
Analogously, it is optimal for any bettor i ∈ B with 1 − xi > π A

k to announce

si
(

πH
k , π A

k

) = (k, A). Hence, hk = ∫ 1
πH
k

f (t) dt and ak = ∫ 1−π A
k

0 f (t) dt .

Risk-adverse case: Equality (4) comes from the fact that the bookmaker wants to

minimize max

{

1
πH
k
hk,

1
π A
k
ak

}

, that is the maximum bettors’ winnings when either

the home team ( 1
πH
k
hk) or the away team ( 1

π A
k
ak) wins. In equilibrium both amounts

should be equal, since otherwise (say, 1
πH
k
hk < 1

π A
k
ak) there would be a profitable

deviation by the bookmaker (she could reduce πH
k slightly so that hk increases

without affecting her worst case scenario). For a fixed π A
k , there exists a unique πH

k

that satisfies (4). To see why, notice that φ (π) = 1
π

∫ 1
π

f (t) dt is a continuous and
strictly decreasing function on π ∈ (0, 1) with φ

(

0+) = +∞ and φ
(

1−) = 0+,
whereas ψ (π) = 1

1−π

∫ π

0 f (t) dt is a continuous and strictly increasing function

on π ∈ (0, 1) with ψ
(

0+) = 0+ and ψ
(

1−) = +∞. Hence, for each πH
k , there

exists a unique π A
k with φ

(

πH
k

) = ψ
(

1 − π A
k

)

. Moreover, the larger πH
k is, the

larger π A
k is. Let 
A

k : (0, 1) → (0, 1) be the function that assigns to each πH
k its

corresponding π A
k . This function is well-defined, strictly increasing, and it satisfies


A
k

(

0+) = 0+ and
A
k

(

1−) = 1−. Notice that the bet volume is given by hk +ak .
Since tax v applies on volume, and ρ applies on profit, the bookmaker would
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maximize

(1 − ρ)

{

(1 − υ) (hk + ak) − 1

πH
k

hk

}

. (14)

Under (4),

hk + ak = hk + π A
k

πH
k

hk = πH
k + π A

k

πH
k

hk

which implies 1
πH
k
hk = 1

πH
k +π A

k
(hk + ak). Hence, (14) can be rewritten as

(1 − ρ)

(

1 − υ − 1

πH
k + π A

k

)

(hk + ak)

which, apart from the irrelevant effect of 1 − ρ, coincides with the desired maxi-
mizing function. Furthermore, it is straightforward to check that there exists at least
one maximizing πH

k ∈ (0, 1).
Risk-neutral case: The bookmaker looks tomaximize (2), which has two terms. The

first term only depends on πH
k and the second one only on π A

k . Hence, the maximal
odds are obtained independently, yielding (5) and (6). To see that there exists at
least one maximum for (5) (the reasoning for (6) is analogous), notice φ(π) =
(

1 − υ − q
π

) ∫ 1
π

f (t) dt is a continuous function on (0, 1] satisfying φ(0+) = −∞
and φ(1) = 0. Since φ(0+) = −∞, we deduce that there exists some π0 such that
φ(π) ≤ 0 for all π ∈ (0, π0]. Existence of a maximum in [π0, 1] is then guaranteed
by the Weierstrass extreme value proposition. �	

Proof of Proposition 2 Assume we are in a subgame perfect equilibrium. Each book-
maker k ∈ K can assure a final payoff of at least zero by setting πH

k = π A
k = 1.

Hence, no bookmaker receives a negative payoff. We will prove that each bookmaker
receives zero. Assume, on the contrary, that there exists some bookmaker with a pos-
itive final payoff. W.l.o.g., we take 1 ∈ K and u1 > 0. Let πH

min = mink∈K πH
k and

π A
min = mink∈K π A

k . Taking into account the optimal strategy of the bettors, any k ∈ K
with πH

k > πH
min implies hk = 0. Analogously, π A

k > π A
min implies ak = 0. Since

bookmaker 1 gets a positive payoff, we deduce that either πH
1 = πH

min or π A
1 = π A

min
or both. Any other bookmaker k ∈ K \ {1} with uk = 0 would find it profitable to
change her bets to π A

k = π A
1 − ε and πH

k = πH
1 − ε, for ε small enough, in order

to get a positive payoff. Hence, uk > 0 for all k ∈ K , which implies hk + ak > 0
for all k ∈ K . This implies that it is profitable for bookmaker 1 to change her odds to
π̃ A
1 = π A

1 − ε and π̃H
1 = πH

1 − ε, in order to attract to herself all the (k, ·)-bettors
and change her final payoff to at least

∑

k∈K uk − O(ε). For for ε small enough, this
payoff is strictly larger than u1. This contradiction shows that no bookmaker can get
a positive payoff. On the other hand, for any k ∈ K , there exists l ∈ K \ {k} with
hl + al > 0, because otherwise bookmaker k would get a positive payoff by setting
monopolistic odds.

The rest of the proof depends on the bookmakers’ risk attitude:
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Risk-adverse case: By an analogous argument to that used in the proof of Proposi-
tion 1 to prove Eq. (4), we deduce

1

πH
k

hk = 1

π A
k

ak (15)

for all k ∈ K . Hence, πH
k = πH

min and π A
k = π A

min for all k ∈ K with hk + ak > 0.
There are then at least two bookmakers that propose the optimal odds in equilibrium,
πH = πH

min and π A = π A
min, and clear the market. Let h = ∑

k∈K hk and a =
∑

k∈K ak . Then,

0 =
∑

k∈K
uk = (1 − ρ)

(

(1 − υ)(h + a) − 1

πH
h

)

which implies

(1 − υ)(h + a) = h

πH
. (16)

Analogously,

(1 − υ)(h + a) = a

π A
. (17)

From (16) and (17), we deduce h
πH = a

π A , which is equivalent to Eq. (4), and
(

πH + π A
)

(1 − υ) = 1, which is equivalent to πH + π A = 1
1−υ

.
We now prove the existence of a (bettor-strong) subgame perfect equilibrium.

Take πH , π A satisfying equation (4) and xH + x A = 1
1−υ

. Consider the following

strategy profile: For all k ∈ K , sk = (

πH , π A
)

. Given s̃K = (

π̃H
k , π̃ A

k

)

k∈K , let
sB be defined as follows. For all i ∈ K , si (̃sK ) = D if 1 − π̃ A

min < xi < π̃H
min,

si (̃sK ) = (k, H) if xi ≥ π̃H
k = π̃H

min, and si (̃sK ) = (k, A) if xi ≤ 1 − π̃ A
k =

1− π̃ A
min. In case of more than one minimizing k, bettor i chooses the first one in a

predefined order. It is straightforward to check that this strategy profile constitutes
a bettor-strong subgame perfect equilibrium.

Risk-neutral case: For all k ∈ K , we know that πH
k = πH

min if hk > 0 and
π A
k = π A

min if ak > 0. Each bookmaker k ∈ K looks to maximize (2), which
sums up zero and has two terms. The first term only depends on πH

k and the sec-
ond one only on π A

k . Hence, the maximal odds are obtained independently, which
implies both terms should be zero in equilibrium, or otherwise the bookmaker could
increase the odd in the negative term in order to turn the correspondent volume into
zero. This implies that the optimal odds satisfy 1 − υ − q

πH = 1 − υ − 1−q
π A = 0,

yielding πH = q
1−υ

and π A = 1−q
1−υ

.

In order to prove the existence of a (bettor-strong) subgame perfect equilibrium,
we take the same strategy profile as in the risk-adverse case, but with πH

k = q
1−υ

and π A
k = 1−q

1−υ
for all k ∈ K . It is straightforward to check that this strategy profile

constitutes a bettor-strong subgame perfect equilibrium. �	
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Proof of Lemma 1 Bettors will always choose k ∈ K with minimum πk so that their
expected utility is maximized. We can then focus on one k ∈ K that minimizes πk .
Assume w.l.o.g. ‖Bk‖ = 1. For simplicity, we write c and π instead of ck and πk ,
respectively. In Step 2 of the game, it is optimal for any bettor i ∈ B to bet for the
home team at odds π when π is such that

(1 − c)

(

1

π
− 1

)

xi + (−1) (1 − xi ) > 0

which is equivalent to:

xi >
π

1 − (1 − π) c
.

Analogously, it is optimal for any bettor i ∈ B to bet for the away team at odd 1 − π

when π is such that

(−1) xi + (1 − c)

(

1

1 − π
− 1

)

(1 − xi ) > 0

which is equivalent to:

xi <
(1 − c) π

1 − cπ
.

Then, the unique odd πc that clears the market is characterized as in (9) by

γ c = 1

πc

∫ 1

πc
1−(1−πc)c

f (t) dt = 1

1 − πc

∫ (1−c)πc

1−cπc

0
f (t) dt. (18)

To see that πc exists and it is unique, let φ,ψ : (0, 1) −→ R be two functions defined

as φ(π) = 1
π

∫ 1
π

1−(1−π)c
f (t) dt and ψ(π) = 1

1−π

∫

(1−c)π
1−cπ

0 f (t) dt for all π ∈ (0, 1),

respectively. It is clear that φ is continuous and strictly decreasing with φ(0+) = ∞
and φ(1−) = 0+, and that ψ is continuous and strictly increasing with ψ(0+) = 0+
and ψ(1−) = ∞. Hence, there exists a unique πc satisfying φ(πc) = ψ(πc). �	
Proof of Corollary 1 From Lemma 1, h = ∫ 1

π
1−(1−π)c

f (t) dt is the volume of bettors

that bet for the home team, whereas a = ∫

(1−c)π
1−cπ

0 f (t) dt is the volume of bettors that
bet for the away team. No other bettor has positive probability of betting. When the
home team wins, the gross profit of the bookmaker is

( 1
π

− 1
)

ch. When the away

team wins, the gross profit of the bookmaker is
(

1
1−π

− 1
)

ca. Moreover, we have
1
π
h = 1

1−π
a. Hence, the bookmakers prefers the home (away) team to win when

h < a (h > a). Equivalently, the bookmaker prefers the home (away) team to win
when h

a < 1 ( ha > 1). Since h
a = π

1−π
, it only happens when π

1−π
< 1 ( π

1−π
> 1), i.e.

π < 1
2 (π > 1

2 ). The result for π = 1
2 is straightforward. �	

123



168 SERIEs (2017) 8:145–175

Proof of Proposition 3 Assume w.l.o.g. ‖B‖ = 1 and K = {k}. For simplicity, and
since there is a unique bookmaker, we write c and π instead of ck and πk , respectively.
Under Lemma 1, for each c ∈ [0, 1], odds πc and 1 − πc that clear the market

are characterized by (9). Notice that, with this πc, ratios

∥

∥

∥BH
k ∪BH

k

∥

∥

∥

πc and

∥

∥

∥BA
k ∪BA

k

∥

∥

∥

1−πc

coincide, so that the set of bettors whose probability of betting is in (0, 1) has volume
zero. Moreover, a subgame perfect equilibrium strategy with undominated strategies
is characterized as follows:

– Each bettor i ∈ B with xi > πc

1−(1−πc)c chooses si (c) = (k, H, πc).

– Each bettor i ∈ B with xi <
(1−c)πc

1−cπc chooses si (c) = (k, A, 1 − πc).
– Any other bettor i ∈ B chooses si (c) = D.

This strategy profile induces π = πc, and it is a strong equilibrium because no set
of bettors can modify π in its own benefit, and any other equilibria will also satisfy
π = πc. In general,

BH
k ∪ BH

k = BH
k =

{

i ∈ B : xi ≥ πc

1 − (1 − πc) c

}

(19)

BA
k ∪ BA

k = BA
k =

{

i ∈ B : xi ≤ (1 − c) πc

1 − cπc

}

(20)

hk + hk
ak + ak

= hk
ak

= πc

1 − πc
. (21)

The (bettor-strong) subgame perfect equilibrium is then completely characterized in
Step 1 by the maximization of the bookmaker’s payoff:

Risk-adverse case: The bookmaker’s payoff is

max
c∈[0,1](1 − ρ) (min{α, β}c − (α + β)υ)

where

α = min

{

1 − πc

πc

(

h + h
)

, a + a

}

(21)= 1 − πc

πc

(

h + h
) (19)= 1 − πc

πc

∫ 1

πc
1−(1−πc)c

f (t)dt
(18)= (1 − πc)γ c.

Analogously,

β
(21)(20)= πc

1 − πc

∫ πc(1−c)
1−cπc

0
f (t)dt

(18)= πcγ c

from where the maximization problem becomes

max
c∈[0,1](1 − ρ)

(

min{1 − πc, πc}c − υ
)

γ c.
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Moreover, term 1 − ρ is unnecesary since it does not depend on
c.

Risk-neutral case: The bookmaker’s payoff is

max
c∈[0,1](1 − ρ) ((qα + (1 − q)β) c − (α + β)υ)

where α and β are defined as in the risk-adverse case. Since 1−ρ

does not depend on c, it is unnecesary and hence themaximization
problem becomes

max
c∈[0,1]

((

q(1 − πc)γ c + (1 − q)πcγ c) c − ((1 − πc)γ c + πcγ c)υ
)

= max
c∈[0,1]

((

q + πc − 2qπc) c − υ
)

γ c.

�	
Proof of Proposition 4 The bettors’ profiles in Step 2 are the same as in the proof of
Proposition 3. Moreover, the chosen bookmakers will be among those with minimum
commission. Assume, on the contrary, that some positive volume Bk of bettors choose
a bookmaker k ∈ K with non-minimum commission. Then,

– If the equilibrium is bettor-strong, bettors in Bk would improve by choosing a
commission-minimizing bookmaker, which is a contradiction.

– If the equilibirumuses undominated strategies, then anybettor inBk would improve
by choosing a commission-minimizing bookmakerwith positive volumeof bettors.
Such a bookmaker exists, because otherwise some positive volume of bettors
would abstain. Their strategy would be dominated by another one that chooses a
commission-minimizing bookmaker.

Following a similar reasoning as that on the proof of Proposition 2, no bookmaker k
can get a positive final payoff because otherwise another bookmaker k′ would improve
by undercutting ck . Since each bookmaker gets zero in equilibrium, following the same
reasoning as in the proof of Proposition 3, the minimal commission c = mink∈K ck is
characterized as follows:

Risk-adverse case: 0 = uk = (1 − ρ) (min{1 − π, π}c − υ) γ

Risk-neutral case: 0 = uk = (1 − ρ) ((q + π − 2qπ)c − υ) γ

where c, π and γ satisfy (9). Equality arises when c = υ
min{1−π,π} in the risk-adverse

case and when c = υ
q+π−2qπ

in the risk-neutral case. They will determine the minimal
commission unless larger than 1, in which case c = 1 would suffice because in that
case (9) would imply γ = 0. Moreover, this minimal commission should be offered
by at least two bookmakers. If, on the contrary, only one bookmaker k offers it, she
could improve increasing it. �	
Proof of Proposition 5 Assume w.l.o.g. K = {k}. For ck small enough, no strategy
profile by the bettors inducing

∥

∥BH
k

∥

∥ = ∥

∥BA
k

∥

∥ = 0 can be part of a bettor-strong
subgameperfect equilibrium inStep 2. The reason is thatwe can alwaysfind ε > 0 such
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that bettors in {i ∈ B : xi < ε or xi > 1 − ε} would find it profitable to bet. We can
then assume that

∥

∥BH
k

∥

∥ ,
∥

∥BA
k

∥

∥ > 0. In Step 2, an equilibriumprofile s is characterized
by ui ≥ 0 for all i ∈ B. That is:

– si (ck) = H iff
∥

∥BH
k ∪BA

k

∥

∥

∥

∥BH
k

∥

∥

(1 − ck) xi ≥ 1. Analogously, i ∈ BH
k iff xi ≥

1
(1−ck)

∥

∥BH
k

∥

∥

∥

∥BH
k ∪BA

k

∥

∥

, which implies that πH = 1
(1−ck)

∥

∥BH
k

∥

∥

∥

∥BH
k ∪BA

k

∥

∥

satisfies BH
k =

{

i ∈ B : xi ∈ [

πH , 1
]}

.

– si (ck) = A iff
∥

∥BH
k ∪BA

k

∥

∥

∥

∥BA
k

∥

∥

(1 − ck) (1 − xi ) ≥ 1. Analogously, i ∈ BA
k iff xi ≤

1 − 1
(1−ck)

∥

∥BA
k

∥

∥

∥

∥BH
k ∪BA

k

∥

∥

, which implies that π A = 1
(1−ck )

∥

∥BA
k

∥

∥

∥

∥BH
k ∪BA

k

∥

∥

satisfies BA
k =

{

i ∈ B : xi ∈ [

0, 1 − π A
]}

.

Moreover, πH + π A = 1
1−ck

. Hence, these πH and π A are characterized by:

πH
∫ 1−π A

0
f (t)dt = π A

∫ 1

πH
f (t)dt

πH + π A = 1

1 − ck

which are equivalent to (11) and (12). These conditions characterize the strong equi-
librium because no subset of bettors can get advantage by changing their bets. In
order to prove existence of πH and π A, note first that these conditions are not pos-
sible when ck > 1

2 . In that case, the only equilibrium is achieved with si = D for
all i ∈ B, which gives the bookmaker a payoff of zero. In case ck = 1

2 , the unique
solution is πH = π A = 1, which again gives the bookmaker a payoff of zero.
Assuming ck < 1

2 , let d = 1
1−ck

∈ (1, 2). We define φ : (d − 1, 1) −→ R as

φ(π) = 1
π

∫ 1−π

0 f (t)dt − 1
d−π

∫ 1
d−π

f (t)dt . It is straightforward to check that φ is
continuous, strictly decreasing, and satisfies φ(1 − d−) > 0, and φ(1−) < 0. Hence,
there exists a unique π = π A such that φ(π) = 0 and, moreover, the bookmaker gets
a positive payoff. �	
Proof of Proposition 6 The bettors’ subgame perfect equilibrium profiles in Step 2
are the same as in the proof of Proposition 5. No bookmaker k ∈ K can get a negative
final payoff because by offering ck = 1

2 she assures
∥

∥BH
k ∪ BA

k

∥

∥ = 0 and hence a final
payoff of zero. Following a similar reasoning as that on the proof of Proposition 2 and
Proposition 4, no bookmaker k can get a positivefinal payoff because otherwise another
bookmaker k′ would improve by undercutting ck . This implies that some bookmaker
offers a commission υ (or between 1

2 and υ when 1
2 < υ) min

{ 1
2 , υ

}

. Moreover,
when υ < 1

2 at least two bookmakers should offer this commission. Otherwise, there
would exists k ∈ K with ck = 0 < minl∈K\{k} cl and bookmaker k would obtain a
positive payoff by setting 0 < c̃k < minl∈K\{k} cl . Following the same reasoning as
in the proof of Proposition 5, thresholds πH , π A are characterized by (11) and (13).

�	
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Proof of Proposition 7 Equation (12) can be rewritten as c = 1− 1
πH+π A , fromwhere

it is straightforward to check that (3) is equivalent to (10)–(12). Moreover, (4) is equiv-
alent to (11) and hence the result holds for the monopolistic case. For the competitive
case, Proposition 2) and Proposition 6 provide the same characterization for πH and
π A. �	
Proof of Proposition 8 Since ρ does not play any role in the characterization of odds
and commissions in equilibrium, it follows that it leaves them unaffected. The equi-
librium strategies of the bettors only consider odds and commissions, and hence their
utilities will also not be affected by ρ. By definition, ρ decreases linearly the book-
maker’s payoff. From these results, no ρ < 1 would maximize tax income, since any
ρ′ = ρ − ε, with 0 < ε < ρ would increase it. Hence, the maximum tax income is
achieved for ρ = 1 and the bookmaker choosing optimal odds/commission. �	
Proof of Theorem 1 a) Odds, commissions and utilities do not depend on ρ because

it does not play any active role in the characterization of the equilibria. Tax income
is not affected because in the competitive market the bookmakers’ profit is zero.

b) In all cases, the utility of bookmakers remains zero because the competitivemarket.
For the fixed-odds case, it follows from (4) that the largerπH the largerπ A. Hence,

πH + π A = min
{

2, 1
1−υ

}

implies that an increase in υ leads to an increase in

both πH and π A. Thus, the utility of bettors and the volume of bets decrease
as υ increases. For the parimutuel case, the reasoning for bettors’ utilities is the
same as in the fixed-odds case. The commission that clears the market increases
with υ because it coincides with υ when υ < 1

2 . For the spread case, π in (9)

does not depend on υ, so either commission c = min
{

1, υ
min{1−π,π}

}

or c =
min

{

1, υ
q+π−2qπ

}

strictly increases with υ. As c increases, the bettors’ utilities

decrease.
c) It follows from b) that the bet volume decreases with υ. This decrease is strict for

υ close to zero. Since the utilitarian social welfare strictly decreases with the bet
volume, we conclude that the unique maximum is achieved at υ = 0.

d) For parimutuel and fixed-odds with risk-adverse bookmakers, υ ≥ 1
2 induces a

zero bet volume and hence the market is empty, so the maximum tax income
should be achieved for υ ∈ (

0, 1
2

)

. For fixed-odds with risk-neutral bookmakers,

υ ≥ max {q, 1 − q} implies 1 ≤ q
1−υ

and 1 ≤ 1−q
1−υ

. By Proposition 2, these
imply πH = π A = 1, so again the bet volume is zero and the market empty,
so the maximum tax income should be achieved for υ ∈ (0,max {q, 1 − q}).
Assume now we are in a spread market. In the risk-adverse case, υ ≥ 1

2 implies
υ ≥ min{1 − π, π} and hence c = 1, which induces a zero volume. Thus, the
maximum tax income should be achieved for υ ∈ (

0, 1
2

)

. In the risk-neutral case,
the reasoning is analogous. It suffices to check that υ ≥ max {q, 1 − q} implies
υ ≥ q + π − 2qπ . Assume υ ≥ max {q, 1 − q}. We have two cases:
– If q ≥ 1

2 , then 1 − 2q ≤ 0 and thus π − 2qπ = (1 − 2q)π ≤ 0. Hence,

υ ≥ max {q, 1 − q} = q ≥ q + π − 2qπ.
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– If q ≤ 1
2 , then 1 − q ≥ 1

2 and, taking into account that π ≤ 1
2 ,

υ ≥ max {q, 1 − q} = 1 − q ≥ 1

2

= (1 − 2π)
1

2
+ π ≥ (1 − 2π) q + π = q + π − 2qπ.

�	
Proof of Lemma 2 We need to find q∗ such that

1

q∗

∫ 1

q∗
f (t)dt = 1

1 − q∗

∫ 1−(1−q∗)

0
f (t)dt

equivalently,

1 − q∗

q∗

∫ 1

q∗
f (t)dt = 1 −

∫ 1

q∗
f (t)dt

from where q∗ = ∫ 1
q∗ f (t)dt is easily deduced. To see that q∗ is unique, notice that

φ(q) = ∫ 1
q f (t)dt is a continuously decreasing function with φ(0) = 1 and φ(1) = 0,

so there exists a unique q∗ such that q∗ = φ (q∗). �	
Proof of Proposition 9 a)We focus first on the fixed-odds case characterized in Propo-
sition 1. Under symmetry, (4) becomes

1

πH

∫ 1

πH
f (t) dt = 1

π A

∫ 1

π A
f (t) dt.

This equality holds when πH = π A. Since F (x) = 1
x

∫ 1
x f (t) dt is a strictly decreas-

ing function, we deduce that, for each π A, there exists a unique πH that satisfies
F

(

πH
) = F

(

π A
)

. Hence, (4) is equivalent to πH = π A. The other restrictions
are πH , π A ∈ [0, 1] and πH + π A ≥ 1, which become πH = π A ∈ [ 1

2 , 1
]

. The
maximization problem given in Proposition 1 becomes

max
π∈

[

1
2 ,1

]

(1 − ρ)

(

1 − υ − 1

2π

) (∫ 1

π

f (t)dt +
∫ 1

π

f (t)dt

)

= max
π∈

[

1
2 ,1

]

(1 − ρ)

(

2(1 − υ) − 1

π

) ∫ 1

π

f (t)dt

which coincides with the characterization of πH and π A in the risk-neutral case when
q = 1

2 .
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We now focus on the spread bets market characterized in Proposition 3. Under
symmetry, (9) becomes

1

π

∫ 1

π
1−(1−π)c

f (t) dt = 1

1 − π

∫ 1

1− (1−c)π
1−πc

f (t) dt

equivalently,

1

π

∫ 1

π
1−(1−π)c

f (t) dt = 1

1 − π

∫ 1

1−π
1−πc

f (t) dt

or

G(π) = G(1 − π)

where G(x) = 1
x

∫ 1
x

1−(1−x)c
f (t) dt . This equality holds when π = 1

2 . It is straight-

forward to check that G is a strictly decreasing function on [0, 1], and so π = 1
2

is the only solution to G(π) = G(1 − π). Hence, (9) is equivalent to π = 1
2 and

γ = 2
∫ 1

1
2−c

f (t)dt . The maximization problem given in Proposition 3 becomes

max
c∈[0,1] (1 − ρ)

(

cmin

{

1 − 1

2
,
1

2

}

− υ

)

γ

= max
c∈[0,1] (1 − ρ)

( c

2
− υ

)

γ

= max
c∈[0,1] (1 − ρ)

( c

2
− υ

)

2
∫ 1

1
2−c

f (t)dt

which coincides with the characterization of c in the risk-neutral case when q = 1
2 .

We now proceed by a change of variable: π = 1
2−c , so that c ∈ [0, 1] is equivalent to

π ∈ [ 1
2 , 1

]

and the maximization problem becomes

max
π∈

[

1
2 ,1

]

(1 − ρ)

(

2 − 1
π

2
− υ

)

2
∫ 1

π

f (t)dt

= max
π∈

[

1
2 ,1

]

(1 − ρ)

(

2(1 − υ) − 1

π

) ∫ 1

π

f (t)dt.

For parimutuel market, we apply Proposition 5 and Corollary 7. It follows from (12)
that c = 1 − 1

πH+π A = 1 − 1
2π∗ is the optimal commission.

b) For competitive fixed-odds and parimutuel markets, we deduce, analogously to
case a), that πH = π A. From Proposition 2 and Proposition 6, in the risk-adverse case
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we have πH + π A = min
{

2, 1
1−υ

}

, so πH = π A = min
{

1, 1
2(1−υ)

}

. Moreover,

these equalities also arise in the risk-neutral case with q = 1
2 .

For competitive spread markets, we deduce, analogously to case a), that π = 1
2 .

From Proposition 4, the optimal commission is

c = min

{

1,
υ

min {1 − π, π}
}

= min

{

1,
υ

min
{

1 − 1
2 ,

1
2

}

}

= min {1, 2υ}

for the risk-adverse case and, taking q = 1
2 ,

c = min

{

1,
υ

q + π − 2qπ

}

= min

{

1,
υ

1
2 + 1

2 − 21
2
1
2

}

= min {1, 2υ}

for the risk-neutral case. In both cases, the optimal commission is c = min{1, 2υ}.
With the change of variable c = 2 − 1

π∗ , we get

π∗ = 1

2 − c
= 1

2 − min{1, 2υ} = min

{

1,
1

2(1 − υ)

}

.

�	
Proof of Proposition 10 For the monopolistic case, by Proposition 9, odds and com-
mission are given by

arg max
π∈

[

1
2 ,1

]

(

2 (1 − υ) − 1

π

)

(1 − π) = min

{

1,

√

1

2(1 − υ)

}

. (22)

a) For the competitive case, the result follows from part b) in Proposition 1. For the
monopolistic case, by (22) it is straightforward to check that, forυ < 1

2 , an increase
in υ increases the odds and commissions, and decreases the bettors’ payoffs as
well as the bookmaker’s payoff when ρ < 1. For υ ≥ 1

2 , the bet market in empty
and so any further increase is irrelevant.

b) For the competitive case, the result follows from part c) in Proposition 1. For the
monopolistic case, (22) implies that an increment in υ decreases the bet volume,
strictly for υ small, and hence the maximum welfare is achieved for υ = 0.

c1) ρ = 1 follows from Proposition 8 and υ = 0 follows from (22) by the same
reasoning as in the proof of part b).

c2) By Theorem 1b we can assume υ ∈ (

0, 1
2

)

. By Proposition 9b the bet volume is
given by

∫ 1

1
2(1−υ)

f (t)dt +
∫ 1− 1

2(1−υ)

0
f (t)dt = 2 − 1

1 − υ
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and hence the tax income is G(υ) =
(

2 − 1
1−υ

)

υ. It is straightforward to check

that G is a concave function on
(

0, 1
2

)

with unique maximum in υ = 2 −
√
2
2 .

�	
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