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Abstract

Virus diseases constitute one of the most important limiting factors in horticultural production.

Cultivation of horticultural species under organic management has increased in importance in

recent years. However, the sustainability of this new production method needs to be supported

by scientific research, especially in the field of virology. We studied the prevalence of three im-

portant virus diseases in agroecosystems with regard to its management system: organic versus

non-organic, with and without greenhouse. Prevalence was assessed by means of a Bayesian

correlated binary model which connects the risk of infection of each virus within the same plot and

was defined in terms of a logit generalized linear mixed model (GLMM). Model robustness was

checked through a sensitivity analysis based on different hyperprior scenarios. Inferential results

were examined in terms of changes in the marginal posterior distributions, both for fixed and for

random effects, through the Hellinger distance and a derived measure of sensitivity. Statistical re-

sults suggested that organic systems show lower or similar prevalence than non-organic ones in

both single and multiple infections as well as the relevance of the prior specification of the random

effects in the inferential process.

MSC: 62-07; 62F15; 62J12; 62P10; 62P12.

Keywords: Hellinger distance, model robustness, risk infection, sensitivity analysis, virus epidemi-
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1. Introduction

Society is becoming increasingly concerned about environmental damage caused by

agricultural activities. The sustainability of conventional agriculture is now being ques-
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tioned, which is prompting traditional production systems to evolve toward production

methods that can protect both environmental and human health (Van Bruggen, 1995;

Bengtsson et al., 2005).

In recent decades, organic agriculture has grown rapidly in comparison with other

agricultural systems. The adoption of these new agricultural practices has brought about

the need to compare low-input and conventional systems to verify whether agroecosys-

tem sustainability can be achieved (Bettiol et al., 2004). Despite the emergence of or-

ganic agriculture systems, the literature on their effects and interactions is scarce and

insufficient, above all in the field of virology (Tomlinson, 1987). Diseases caused by

viruses constitute a major threat to the large-scale production of crops worldwide, caus-

ing serious economic losses and undermining sustainability (Gallitelli, 2000). Assessing

the risk of infection should therefore be a priority in the study of the epidemiology of

such virus diseases.

The ecological and epidemiological factors that determine virus infections in veg-

etable crops are diverse and little is known about them. The sources and spread of

viruses, together with certain agricultural and horticultural practices, have a strong in-

fluence on their prevalence (Hanssen et al., 2010). In this respect, studies on the risk

of virus infections need to characterize the agroecosystem balance as well as under-

stand the complex relationships between organisms (plants, pathogens, and vectors) and

environment (Serra et al., 1999).

The main scientific question addressed in this paper is the study and comparison of

the risk of different virus infections in tomato and pepper plots characterized by their

agroecosystem. Specifically, we focus on the detection and quantification of the ef-

fects associated with organic management. The agroecosystem of each plot is defined

through a set of covariates containing information on its management conditions and al-

titude. Agroecosystems are dynamic entities (Finley et al., 2011) with complex sources

of uncertainty and hierarchies. Following Thornley and France (2007), the estimation of

the infection risk of different viruses within the same plot would require the modelling

of not only a suitable set of covariates but also the inclusion of some probabilistic terms

which connect the different observations of the same individidual.

The inclusion of dependence and/or correlation relationships among variables, re-

sponse and/or covariates, is usually done by means of random effects whose stochastic

nature adds much more probability to the structure of the model. Bayesian reasoning

provides a natural environment for analysing them mainly because of the own concep-

tion of the Bayesian probability theory, which specifies all the uncertainties in the model

through probabilistic elements (Loredo, 1990). Some applied papers that illustrate the

benefits of hierarchical Bayesian models in biometrics scenarios are Alvares et al. (2016)

in agriculture, Paradinas et al. (2015) in fisheries, Paciorek et al. (2009) in forestry, and

Clark et al. (2007) in ecology.

A Bayesian binary correlated model under the generalized linear mixed models

(GLMM) specification was considered to perform a regression analysis of the prevalence

of the different viruses. Random effects were used to correlate the risk of infection of
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each virus in the same plot and quantify the intra-plot ability to be infected. Robustness

in hierarchical Bayesian models is a major concern as it can be affected by an inappro-

priate choice of the hyperprior distributions for hyperparameters (Lambert et al., 2005;

Gelman, 2006; Roos and Held, 2011; Roos et al., 2015). To this effect, the sensitivity

of the modelling was tested using several specifications for the hyperprior distribution

of the random effects scale parameter. A general measure based on the Hellinger dis-

tance (Le Cam, 2012), with its calibration, was used to quantify discrepancies in the

subsequent posterior marginal distribution of the common regression coefficients and

hyperparameter.

The remainder of this article is organized as follows: Section 2 reviews the data and

presents the formulation of the model. Section 3 reports and discusses the results with

regard to multiple and single viral infections. Section 4 proposes several random effects

specifications and analyses the robustness of the estimated models through a sensitiv-

ity measure based on the Hellinger distance. Some concluding remarks are given in

Section 5.

2. Viruses data and statistical modelling

2.1. Data description

Globally, about 30 viruses are capable of affecting the most known horticultural crops.

However, despite being able to infect a wide variety of species, they usually affect

Solanaceae species, specially tomato (Solanum lycopersicum) and pepper (Capsicum

annuum L.). These species are two of the most common vegetable crops grown in Spain

whose production is being seriously limited by virus diseases. There has recently been

a considerable increase in the cultivation of these vegetables under integrated systems

such as organic agriculture. It is therefore essential to carry out subsequent virus preva-

lence studies in order to guarantee their sustainability.

A project under the auspices of the Valencian Institute Agricultural Research was

conducted in the summer of 2012 in the Valencian region for this purpose. A total of

30 plots in tomato and pepper production were selected according to their system of

production. Each plot was evaluated in terms of its agroecosystem characterization and

the presence or absence of three different viral infections in the crops: tomato mosaic

virus (ToMV), cucumber mosaic virus (CMV) and tomato spotted wilt virus (TSWV).

These viruses affect both tomato and pepper crops equally, are transmitted in different

ways, and can cause substantial economic losses. The presence of each specific virus

infection in a plot was assumed when the virus was detected in at least one of eight

randomly-selected plants. The enzyme-linked immunosorbent assay (ELISA) technique

(Clark et al., 1976) was used to detect each virus.

The assessment of the agroecosystem of each plot was determined by its manage-

ment condition and altitude. Management condition was evaluated by classifying each
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plot as organic, non-organic with greenhouse structure, and non-organic with no green-

house structure. These categories were defined according to the most representative

agroecosystems in Spanish agriculture. Organic plots differ from the non-organic ones

in many respects, but substantial differences are related to the use of agrochemicals

and other external inputs with important influence in pest and disease prevalence. In

fact, some purported drawbacks related to organic agriculture include an increasing in-

cidence of pest damage and higher risks of pest outbreaks (Letorneau and Goldstein,

2001). All plots classified as organic complied with the current regulation and were

certificated as such by the Organic Agriculture Committee of the Autonomous Govern-

ment of València. The presence of greenhouse in non organic plots was also considered

because is a frequent practice in non-organic systems. The use of covering protections

suppose a physical barrier which is directly related to virus infection in the sense that

denies insects (vector of virus transmission) acces to plants.

Of the total of 30 plots of our study, 18 were classified as organic and 12 as non-

organic, 5 of them with greenhouse structure. For organic plots, the proportion of in-

fected plants with ToMV, CMV, and TSWV was 0.222, 0.167, and 0.056, respectively.

In the case of non-organic plots with greenhouse these proportions were 0.400, 0.200,

and 0.200, respectively, and 0.143, 0.286, and 0.286 for non-organic plots without green-

house. The organic plots presented a lower proportion of plants infected by CMV and

TSWV viruses, but the prevalence of ToMV was lowest in the non-organic plots with

no greenhouse.

2.2. Statistical model

We consider a logit GLMM for correlated binary responses (Ntzoufras, 2009) to model

the Bernoulli random variable Yi j which describes the presence or absence of virus j

( j = 1 corresponds to ToMV, j = 2 to CMV, and j = 3 to TSWV) in plot i,

(Yi j | θi j)∼ Bernoulli(θi j),

logit(θi j) = x
T

iβββ j +bi, i = 1, . . . ,30,
(1)

where θi j is the probability that virus j will be detected in plot i and represents risk of

infection; xi is the vector of covariates; βββ j is the corresponding vector of the regression

coefficients; and (bi | σ2
b) ∼ N(0,σb) is a normal random effect associated with plot

i with mean zero and standard deviation σb. The three management conditions were

coded in a sequence of two dummy variables (organic and non-organic, with and without

greenhouse structure) to avoid overparameterization, with organic management as the

reference category.

Random effects capture within-plot variability and correlate prevalence among all

viruses so that each individual virus infection is determined by its own agroecosystem

effect and an individual effect plot which denotes its ability to be infected. They also
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provided conditional independence among the prevalence of the three viruses as follows

P(Yi j = y j, j = 1,2,3 | βββ,bi, xi) =
3

∏
j=1

P(Yi j = y j | βββ j,bi, xi), (2)

where y j ∈ {0,1}, j = 1,2,3, βββ = (βββ1,βββ2,βββ2)
T, and the conditional probability that plot

i will be infected with virus j can be expressed as

P(Yi j = 1 | βββ j,bi, xi) =
exp{xT

iβββ j +bi}
1+ exp{xT

iβββ j +bi}
, (3)

The joint marginal distribution obtained integrating out the random effects in (4),

P(Yi j = y j, j = 1,2,3 | βββ,σb, xi) =

∫

P(Yi j = y j, j = 1,2,3 | βββ,bi, xi)N(bi | 0,σb)dbi,

(4)

does not depend on the subject-specific random effects and can be interpreted as the

common risk infection of a generic plot from the population with the same agroecosys-

tem and altitude.

Inference was carried out using Bayesian statistics. We therefore needed to elicit

a prior distribution for the parameters and hyperparameters to complete the Bayesian

model. We considered a prior independent default scenario with normal distributions

centered at zero and a wide variance for the regression coefficients. As previously

introduced, the specification of a hyperprior distribution for the random effects scale

parameter is a challenging issue (Lambert et al., 2005; Gelman, 2006; Roos and Held,

2011; Roos et al., 2015). Section 4 contains a sensitivity analysis of the performance of

various traditional hyperprior choices (gamma, uniform and half-normal) in our study.

This analysis led us to choose the uniform distribution Un(σb | 0,100) for the standard

deviation of the random effects. Consequently

π(βββ,σb) = ∏
3
j=1 ∏

3
k=0π(β jk)π(σb)

= ∏
3
j=1 ∏

3
k=0 N(β jk | 0,σ2 = 1000)Un(σb | 0,100) (5)

where βββ j = (β j0,β j1,β j2,β j3)
T are the regression coefficients associated with organic,

non-organic with and without greenhouse and altitude (in logarithmic scale) for virus j.

3. Results

The posterior distribution π(βββ,σb | D), where D denotes data, was approximated us-

ing Markov chain Monte Carlo (MCMC) simulation methods with WinBUGS Software

(Lunn et al., 2000). Random effects models, and Bayesian categorical GLMs in par-

ticular, involve many computational difficulties (Albert and Chib, 1993). We fixed the
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number of iterations and the burn-in period with very large values to avoid strong cor-

relation in the MCMCs samples and get a reliable sample of the posterior distribution.

Specifically, simulation was run considering three Markov chains with 1 000 000 itera-

tions and a burn-in period with 100 000. In addition, the chains were thinned by storing

every 10th iteration in order to reduce autocorrelation in the saved sample and avoid

computer memory problems.

Trace plots of the simulated values of the chains appear overlapping one another,

indicating stabilization. Convergence of the chains to the posterior distribution was

assessed using the potential scale reduction factor, R̂, and the effective number of inde-

pendent simulation draws, neff. In all cases, the R̂ values were equal or close to 1 and

neff > 100, thus indicating that the distribution of the simulated values between and

within the three chains was practically identical, and that sufficient MCMC samples had

been obtained, respectively (Gelman and Rubin, 1992).

3.1. Management conditions

Multiple viral infections that may result in synergisms or antagonisms are frequently

found in nature, with unpredictable pathological consequences. Synergistic interactions

resulting from mixed infections with two or more viruses are common and well docu-

mented in plants (Garcı́a-Cano et al., 2006). Viral synergism could affect various growth

variables such as plant height, weight, and yield (Murphy and Bowen, 2006), and in ex-

treme cases can lead to plant death.

The joint posterior distribution, π(P(Yi j = y j, j = 1,2,3 | βββ,σb, xi) | D), where y j ∈
{0,1}, of the risk infection given in (4) for a generic plot at given altitude in each of the

management systems is the basic tool for assessing such synergisms and antagonisms.

This posterior distribution is also the starting point for the computation of relevant con-

ditional or marginal inferences.

We begin by discussing some results about multiple viral infections with regard to

plot management condition: the posterior distribution of the prevalence of the total num-

ber of viruses in a plot and the posterior distribution of the risk of a third infection in

plots already infected with two of the viruses. Figure 1a shows the mean of the posterior

distribution associated to the presence of 0, 1, 2 and 3 viruses in a generic plot i located

at 76 meters of altitude (the sample mean) with regard to its management system. Most

of the plots have no infections, but the organic ones present the highest rates for plots

without infections. Non-organic plots, with and without greenhouse, behave similarly.

Figure 1b shows the posterior mean of the risk of a third infection in plots already

infected with two of the viruses. Outcomes are also obtained for a generic plot i situated

at 76 meters of altitude (the sample mean) with regard to its management system. For

condition ToMV in the presence of CMV and TSWV, organic and non-organic with

greenhouse plots behave similarly with probabilities around 0.6. This is not the case

for non-organic with no greenhouse plots, with an estimated probability close to 0.2.

CMV infection given ToMV and TSWV presents homogeneous results in all manage-
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Figure 1: (a) Probability (mean of the posterior distribution) for the presence of 0, 1, 2 and 3 viruses

in organic (black), non organic-green (red) and non organic-non green (green) management systems. (b)

Probability (mean of the posterior distribution) of the risk of a third infection in plots already infected

with two of the viruses in organic (black), non organic-green (red) and non organic-non green (green)

management systems.

ment systems, with a higher difference among estimated probabilities of 0.167. The

pattern for the probability of a TSWV infection in plots already infected with ToMV

and CMV seems to be different among the management conditions: non-organic with

no greenhouse systems shows the highest probability (0.514), followed by non-organic

with greenhouse plots (0.316), and organic (0.172), respectively. It is difficult to detect

a general trend on conditional infections among the different agroecosystems analysed.

This is a very interesting subject and surely a new study with more data would be nec-

essary in order to better understand them.

The marginal effect of the management conditions in each virus was assessed through

the marginal posterior distribution π(P(Yi j = 1 | βββ,σb, xi) |D). Table 1 shows a descrip-

tive of the posterior distribution of the risk of infection for each virus and management

conditions for a generic plot situated at a height of 76 meters (the sample median). The

lowest risk of infection for a generic plot under organic management is for TSWV virus.

The most relevant differences among the management conditions were found for virus

ToMV. In contrast, virus CMV seemed the most stable. However, the organic effect was

weaker for ToMV risk, approximately about four times the one for TSWV virus. It is

important to mention the great uncertainty associated to all marginal posterior distribu-

tions in the analysis, mainly due to the combination of the reduced size of the sample and

the usual scarce information of binary data. To this effect, a bigger experiment would be

necessary for a more informative and objective study that allows to reach more precise

conclusions about the subject.
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Table 1: Summary of the posterior distribution of the risk of infection for each management condition and

virus.

Virus Management Mean Sd Q2.5% Q50% Q97.5%

ToMV
Organic 0.225 0.184 0.008 0.181 0.734

Non-organic, greenhouse 0.311 0.252 0.006 0.248 0.900

Non-organic, no greenhouse 0.100 0.147 0.000 0.041 0.553

CMV
Organic 0.169 0.161 0.004 0.124 0.634

Non-organic, greenhouse 0.155 0.190 0.001 0.080 0.719

Non-organic, no greenhouse 0.234 0.216 0.004 0.168 0.809

TSWV
Organic 0.057 0.093 0.000 0.026 0.309

Non-organic, greenhouse 0.174 0.203 0.001 0.095 0.764

Non organic, no greenhouse 0.253 0.223 0.005 0.189 0.831

Comparison of the three management systems was also quantified with the posterior

distribution of the risk difference (RD) (Christensen et al., 2011). RD is an absolute and

intuitive measure of association for quantifying difference between proportions associ-

ated to an outcome of interest in two groups. It is defined in [−1,1] so that RD = 0

means no difference between groups, −1 ≤ RD < 0 that risk is greater in group 2, and

0 < RD ≤ 1 the opposite.

Figure 2 shows, for each virus, the posterior mean and 95% credible interval of the

RD between organic and non-organic, with and without greenhouse, generic plots. Infor-

mation provided by this graphic reaffirms the results in Table 1. Note that the differences

between organic management conditions and the two non-organic conditions are clear in

the case of TSWV infection: both posterior distributions are highly concentrated on the

negative RD values with associated posterior probabilities 0.764 and 0.910 when com-
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Figure 2: Posterior mean and 95% credible interval of the RD between organic system in relation to non

organic-green (left) and non organic-no green (right) system for ToMV, CMV and TSWV infections.
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paring organic and non-organic with and without greenhouse management, respectively.

For CMV infections, the results are less clear, with posterior probabilities of 0.395 and

0.611, respectively. In the case of ToMV infection, there are few differences between

organic and non-organic with greenhouse conditions (posterior probability of a negative

difference is 0.620), but a relevant probability, 0.84, that the risk of infection will be

greater in organic than in non-organic without greenhouse.

3.2. Altitude condition effect

Plot altitude is a relevant epidemiological information due to its important role in shap-

ing insect vector distributions and virus survival. The effect of altitude on the risk of

infection is clearly negative in all viruses and therefore we can expect a decrease of the

risk of infection as altitude increases. Figure 3a shows the posterior distribution of the

regression coefficient associated to altitude for each virus: −0.914, −0.745 and −0.480

are, respectively, the subsequent posterior mean of the coefficient for virus ToMV, CMV,

and TSWV, with posterior probabilities 0.940, 0.904, and 0.768 associated to their neg-

ative values. Note that virus ToMV is the most negatively associated with altitude.

Figure 3b shows the posterior distribution of the RD between two generic organic plots

with altitudes of 16 and 604 m, the lowest and highest values of the organic plots in the

sample. These graphics are in line with the previous comments and also indicate the

less important role of altitude in the risk of a TSWV infection in organic crops.
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Figure 3: For virus ToMV (in black), CMV (in red), and TSWV (in green): posterior mean and 95% cred-

ible interval of the regression coefficient associated to the altitude (in logarithmic scale) (a), and posterior

distribution of the RD between a typical organic plot at altitudes 16 and 604 m (b).
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3.3. Individual random effects

Random effects for each plot capture the ability to be infected of individual plots, thus

correlating the risk of infection among the viruses of each plot. Since each individual

random effect is responsible for the differences in the estimation of the risk between

plots managed under similar agroecosystem conditions, quantifying their contribution

to the analysis in terms of factors and covariates is highly relevant to our understanding

of the weight of the common and individual elements in the model.

The mean of the posterior distribution of the standard deviation, σb, of the plot ran-

dom effect is 0.968 with a 95% credible interval [0.046, 2.671]. In addition, we assessed

the contribution of the random effect associated to each plot towards the conditional pos-

terior distribution of the risk of infection π(P(Yi j = 1 | βββ,bi, xi) | D). It was estimated

individually for the three viruses at the altitude of 76 meters with the purpose of as-

sessing differences in risk infection among individuals that share the specification of the

vector of covariates xi, that is to say, plots that were managed under the same system.

Figure 4 shows a mosaic of subfigures in which each one displays the posterior expec-

tation of the risk of infection for each plot grouped according to management condition

(rows) and the type of virus infection (columns).

We can distinguish a certain stability in risk infection regarding individuals belong-

ing to non-organic no greenhouse systems (row 3) with maximum differences among

individuals of 0.039, 0.084 and 0.090 for ToMV, CMV and TSWV respectively. Non-

organic with greenhouse plots (row 2) are less similar with maximum differences in risk

infection no greater than 0.190 (ToMV). Organic plots showed the most remarkable dif-

ferences among their individuals, with maximum differences of 0.211 for ToMV and

0.231 for CMV. In contrast TSWV showed the opposite behaviour with a slight maxi-

mum difference of 0.087. In conclusion, we suspect the strong relevance of the common

elements in the model (fixed effects) in the case of non-organic and no greenhouse plots

regardless of virus infection. On the other hand, in the case of organic plots the weight

of the common elements effect in the model was not so evident considering that not all

viruses exhibited a similar tendency: ToMV and CMV risk infection varied considerably

among individuals, but this was not the case with TSWV.

4. Sensitivity analysis

Bayesian GLMMs are a particular class of models for which the estimation process

can be seriously affected by the elicitation of prior distributions for the random effects

scale parameter (standard deviation, σb, or a one-to-one transformation of it, variance

σ2
b or precision τb = 1/σ2

b). Special attention is required in studies where the number

of groups is small, σb is close to zero, and/or the number of groups is large compared

to the number of observations in each group (Box and Tiao, 1992; Gelman, 2006; Roos

and Held, 2011). This latter situation is the case of our study, with I = 30 plots and
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only three observations in each of them. An additional element that aggravates the

situation is the sparsity of the data due to its categorical, binary condition. We conducted

a sensitivity analysis of the posterior distribution to the specification of several prior

hyperdistributions for the random effects scale parameter. This analysis was based on

the methodology developed in McCulloch (1989), Roos and Held (2011), and Roos et

al. (2015) regarding the stability of the marginal posterior distribution of the regression

coefficients of the model and the relative changes in the subsequent marginal posterior

distributions of the random effects scale parameter.
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Figure 4: Posterior mean of the conditional posterior distributions associated to management systems or-

ganic (row 1), non organic and greenhouse (row 2) and non organic and non greenhouse (row 3) for viruses

ToMV (column1), CMV (column 2) and TSWV (column 3) obtained from a fixed altitude value of 76 m.
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4.1. Hyperprior distributions

For the random effects scale parameter, different hyperprior distributions were specified

for τb within the family of gamma, and for σb within uniform and half-normal distribu-

tions

• Gamma: Ga(0.001, 0.001), Ga(0.005, 0.005), and Ga(0.05, 0.05) (Ga1, Ga2, and

Ga3, respectively),

• Uniform: Un(0, 100), Un(0, 55.63), and Un(0, 7.92) (Un1, Un2, and Un3), and

• Half-normal: HN(10), HN(3.0387), and HN(0.3965) (HN1, HN2, and HN3).

Gamma distributions were parameterized in terms of a shape and a rate parameter,

and half-normal distributions were set according its standard deviation. Hyperdistribu-

tions Ga1, Un1, and HN1 were considered the default choices due to their “noninfor-

mative” nature and their common use in Bayesian applications. In addition, two other

hyperparameter specifications within each family of hyperdistributions were contem-

plated to assess the effect of small and medium perturbations in the hyperparameter

specifications on posterior inferences. These hyperprior distributions were set follow-

ing the criterion of the Hellinger distance (Le Cam, 2012). This is a symmetric and

invariant measure of discrepancy between two probability distributions taking values

between 0 and 1, where the value 0 represents no divergence and 1, full divergence (See

Appendix 1).

Hyperparameter values were assessed considering two reference Hellinger distance

values, a small and a medium perturbation. This computation was based on the analyti-

cal expression of the Hellinger distance between gamma, uniform and half-normal dis-

tributions (see Appendix 1). Small perturbation was associated to a Hellinger distance

of 0.541 and medium to 0.848. Consequently, Ga2, Un2, and HN2 hyperparameteres

were determined to obtain a Hellinger distance of 0.541 in relation to hyperdistributions

Ga1, Un1, and HN1, respectively. Hyperparameter values for Ga3, Un3, and HN3 were

selected because of their Hellinger distance, 0.848, to hyperpriors Ga1, Un1, and HN1,

respectively.

Focusing on gamma hyperdistributions, Ga1 exhibits the widest range of uncertainty

with a variance of 1000. It is frequently used in many of the examples provided with the

WinBUGS software (Lunn et al., 2012) and shows a uniform shape for most of the range

with a spike of probability density near zero. Ga2 and Ga3 share this shape, although

they show lower range coverage as a consequence of their fewer variance values, 200

and 20. Hyperprior Un1 is recommended by Spiegelhalter et al. (2004) in their book on

clinical trials. It is a very generous distribution allowing for a great space of values due

to its variance of 833.3. Un2 and Un3 display variance values of 257.84 and 5.23, and

as such they are very different from the non-null density range. The half-normal default

option, HN1, is a choice used in Thompson et al. (1997) and Roos and Held (2011). It

exhibits a variance of 36.3 giving a low probability to values greater than this. HN2 and

HN3 are more informative versions, especially HN3 with a variance value of 0.06.
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We conducted nine independent inferential processes with the same data and the

same marginal prior distribution π(βββ) for the regression coefficients as in (5) but varying

marginal hyperprior distribution according to the specifications previously presented.

4.2. Sensitivity of the regression coefficients

We discuss sensitivity of the marginal posterior distributions of the regression coeffi-

cients derived from the inferential processes described above. Discrepancies among the

estimates of posterior marginal distributions were the result of alterations in the hyper-

prior values. Hellinger distances between posterior marginal distributions approximated

by MCMC methods were computed via expression (A.1) in Appendix 1 and imple-

mented by means of the function HDistNoSize in the R package bmk (Krachey and

Boone, 2012). Furthermore, to facilitate interpretation these values were calibrated with

regard to a normal distribution with variance 1 (see Appendix 2 for more details about

calibration).

Table 2 shows the calibration of the Hellinger distance between the posterior marginal

distribution of the different coefficients of regression computed from the hyperpriors

considered. In none of the comparisons the discrepancies observed were greater than

the differences between the normal distributions N(0,1) and N(0.284,1), which reveals

that Hellinger values are in general close to zero (see Table 4 in Appendix 2 where a cal-

ibration of the normal mean related to its subsequent Hellinger distance is displayed).

Uniform distributions have the smallest discrepancies despite the existing differences

among hyperpriors Un1, Un2, and Un3. The behaviour of half-normal distributions

was similar to that of the uniform distributions in the case of hyperpriors HN1 and

HN2. Nevertheless, inference from hyperprior HN3 exhibited the greatest discrepan-

cies, surely due to its informative nature. Gamma showed greater discrepancies than

uniform hyperpriors in all cases, although in none of the scenarios did these differences

exceed those obtained from hyperprior HN3. Thus, the above comments enable us to

conclude that our assumptions on the choice of hyperparameter prior distribution influ-

ences the estimates of the regression coefficients only to a minor extent.

We now discuss the effect of the different hyperpriors considered on the posterior

distribution of each regression coefficient. Figure (5) is a mosaic of subfigures. Each

subfigure displays the posterior mean of the regression coefficients of the different infer-

ential processes conducted. The order of the points corresponds to the order in which hy-

perpriors are presented (Ga1, Ga2, Ga3; Un1, Un2, Un3; and HN1, HN2, HN3). A great

similarity can repeatedly be seen, in practically all coefficients and viruses, between re-

sults from hyperpriors HN1 and HN2, and also those from the uniform hyperpriors. As

expected, results from HN3 are very different, most likely due to its informative char-

acteristics. Finally, posterior means from the analyses based on the gamma hyperpriors

vary the most, indicating a greater sensitivity to parameter specification.
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Table 2: Calibration of the Hellinger distance between the posterior marginal distribution of the coeffi-

cients of regression associated to organic (βo), non-organic with greenhouse (βno-g), non-organic without

greenhouse (βno-ng) and altitude in logarithmic scale (βalt) computed from hyperprior distributions Ga1

and Ga2, Ga1 and Ga3, Un1 and Un2, Un1 and Un3, HN1 and HN2, and HN1 and HN3.

Virus Coeff. (Ga1,Ga2) (Ga1,Ga3) (Un1,Un2) (Un1,Un3) (HN1,HN2) (HN1,HN3)

ToMV βo 0.038 0.084 0.024 0.022 0.034 0.236

βno-g 0.032 0.068 0.019 0.019 0.035 0.197

βno-ng 0.020 0.042 0.018 0.020 0.024 0.124

βalt 0.043 0.099 0.022 0.024 0.039 0.284

CMV βo 0.033 0.068 0.023 0.021 0.034 0.201

βno-g 0.029 0.056 0.021 0.019 0.025 0.148

βno-ng 0.029 0.060 0.019 0.020 0.027 0.171

βalt 0.037 0.085 0.023 0.023 0.038 0.249

TSWV βo 0.022 0.052 0.019 0.021 0.030 0.144

βno-g 0.024 0.043 0.021 0.020 0.025 0.108

βno-ng 0.023 0.048 0.020 0.019 0.025 0.139

βalt 0.028 0.069 0.020 0.019 0.034 0.193

4.3. Sensitivity of the variability of the random effects

We now discuss and assess the sensitivity of the random effects scale parameter cor-

responding to the inferential processes described in Subsection 4.1. Figure 6 shows

the posterior marginal distribution (mean and 95% credible intervals) of the standard

deviation of the random effects. It is worth noting that in the case of the gamma hy-

perpriors, the posterior marginal distribution π(σb | D) is computed from the joint pos-

terior π(βββ,τb | D), which is based on the prior π(βββ,τb). The results from the uniform

hyperdistribution are stable, since the subsequent marginal posterior distributions are

virtually indistinguishable. The opposite occurs for results from the gamma hyperpri-

ors, with very different posterior distributions greatly influenced by the spike near zero

of the subsequent hyperprior. The half-normal distribution also exhibits a sensitive per-

formance, with the posterior distributions from HN1 and HN2 practically equal to those

from the uniform distribution. As previously noted, the exception is for the posterior

distribution from the informative HN3.

Finally, we used a sensitivity measure developed in Roos and Held (2011) to evaluate

the relative change in the posterior marginal distribution of the random effects scale

parameter with regard to subsequent change in the prior distribution. Changes in both

prior and posterior distributions are assessed through the ratio between two Hellinger

metrics in the form

S(π1,π2) =
H(π1(θ | D),π2(θ | D))

H(π1(θ),π2(θ))
,
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Figure 5: Posterior mean of the regression coefficients associated to plot categories organic (row 1), non

organic and greenhouse (row 2), non organic and non greenhouse (row 3), and covariate altitude in loga-

rithmic scale (row 4) for viruses ToMV (column 1), CMV (column 2), and TSWV (column 3) obtained from

the full inferential process based on G1, G2 and G3 (black), Un1, Un2 and Un3 (red) and HN1, HN2 and

HN3 (green) hyperpriors.
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Figure 6: Posterior mean and 95% credible interval for σb obtained from hyperpriors Ga1, Ga2, and Ga3

in black, Un1, Un2, and Un3 in red, and HN1, HN2, and HN3 in green.

where π1(θ |D) and π2(θ |D) are the subsequent posterior distributions from π1(θ) and

π2(θ). Note that S(π1,π2) only depends on the Hellinger distance, and consequently,

because of its invariancy to any one-to-one transformations we can parameterize the

prior and posteriors in terms of τb or σb.

As expected, sensitivity values with gamma hyperpriors are very relevant,S(Ga1,Ga2)
= 0.274 and S(Ga1,Ga3) = 0.477, with calibrated values 0.267 and 0.436 respectively.

Thus, considering a Hellinger priors difference such as that reported between the normal

distributions N(0,1) and N(1,1), their corresponding Hellinger posteriors difference

should be understood as equal to that generated between the pair N(0,1) and N(0.267,1)
in the case of hyperpriors Ga1 and Ga2, N(0,1) and N(0.436,1) in the case of Ga1 and

Ga3 (see Appendix 2 for more details of calibration). In contrast, sensitivity values asso-

ciated to uniform hyperpriors are near zero, S(Un1,Un2) = 0.017, S(Un1,Un3) = 0.010,

with calibrated values 0.017 and 0.010, despite the Hellinger distance between their

corresponding priors being identical in gamma choices. In the case of the half-normal

hyperpriors, the sensitivity associated to HN1 and HN2 is small (0.071 and calibrated

value 0.069) but relevant when comparing HN1 and HN3 (S(HN1,HN3) = 0.588 and

calibrated value 0.576).

4.4. Sensitivity of the risk of plot infection

The risk of plot infection was considered the most appropriate measure to describe re-

sults in Section 3 due to its great relevance in agronomic studies. In this sense, the anal-

ysis of the variability of the estimates from different modelling prior scenarios could be

an important issue, mainly as a measure of confidence and reliability. As it was defined

in (4), its posterior estimation will depend on the covariates, regression coefficients and

random effects, which show different patterns regarding sensitivity. We carried out a
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sensitivity analysis for that on a similar basis as that for Section 3: the posterior distri-

bution of the risk infection was calculated for a generic plot situated at altitude 76 meters

(the sample median) for each virus and management conditions within each hyperprior

scenario.

Table 3 shows the calibration of the Hellinger distance between the posterior distri-

bution of the risk of plot infection for each management condition and virus. Similarly

to the particular behaviour of the regression coefficients, the estimation of the risk of plot

infection seems to be weakly influenced by the different hyperprior assumptions. In any

case, the discrepancies observed between all the comparisons were not greater than the

difference between the normal distribution N(0,1) and N(0.583,1), which reveals that

Hellinger values are in general close to zero. It is worth noting that the Hellinger dis-

tance between normal distributions N(0,1) and N(1,1) is 0.343 (see again Table 4 in

Appendix 2). In a similar manner, the uniform distributions had the smallest discrepan-

cies together with half-normal distributions HN1 and HN2. However, as we expected

inferences from HN3 exhibited the greatest discrepancies. Gamma hyperpriors showed

substantial discrepancies, above all between Ga1 and Ga3, although these differences

did not exceed those obtained from hyperprior HN3. Thus, these outcomes seem to in-

dicate that the particular choice of a hyperprior distribution influences the estimation of

the risk infection weakly but in a major extent that in the case of the estimates of the

regression coefficients.

Table 3: Calibration of the Hellinger distance between the posterior marginal distribution of the risk in-

fection computed from hyperprior distributions Ga1 and Ga2, Ga1 and Ga3, Un1 and Un2, Un1 and Un3,

HN1 and HN2, and HN1 and HN3.

Virus Management (Ga1,Ga2) (Ga1,Ga3) (Un1,Un2) (Un1,Un3) (HN1,HN2) (HN1,HN3)

ToMV Organic 0.087 0.234 0.011 0.014 0.041 0.583

Non-organic, greenhouse 0.051 0.139 0.011 0.011 0.029 0.355

Non-organic, no greenhouse 0.041 0.100 0.015 0.016 0.031 0.268

CMV Organic 0.079 0.213 0.015 0.014 0.041 0.536

Non-organic, greenhouse 0.039 0.107 0.012 0.010 0.028 0.285

Non-organic, no greenhouse 0.053 0.142 0.009 0.012 0.028 0.369

TSWV Organic 0.049 0.128 0.026 0.025 0.037 0.323

Non-organic, greenhouse 0.040 0.103 0.014 0.009 0.029 0.280

Non-organic, no greenhouse 0.053 0.142 0.013 0.011 0.030 0.380

There are not so many discrepancies among the posterior means of the risk of a plot

infection from the different hyperprior scenarios but there are many in the posterior vari-

abilities (see Table 4). We accounted for variability in terms of standard deviation be-

cause it is a measure which describes the grade of uncertainty of the quantity of interest

but mainly due to its direct agronomic interpretation. A great similarity in the posterior

standard deviation values is repeatedly appreciated in results derived from Un1, Un2,

Un3, HN2 and HN2 scenarios. The HN3 value was the most different. However, esti-

mates corresponding to Ga1, Ga2 and Ga3 vary the most, especially in the case of Ga1.
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Table 4: Posterior standard deviation of the risk of a plot infection from the full inferential process based

on Ga1, Ga2, Ga3, Un1, Un2, Un3, HN1, HN2 and HN3 hyperpriors.

Virus Management Ga1 Ga2 Ga3 Un1 Un2 Un3 HN1 HN2 HN3

ToMV Organic 0.136 0.146 0.161 0.184 0.184 0.184 0.183 0.178 0.118

Non-organic, greenhouse 0.217 0.224 0.235 0.252 0.252 0.253 0.251 0.248 0.206

Non-organic, no greenhouse 0.118 0.123 0.131 0.147 0.147 0.147 0.147 0.142 0.109

CMV Organic 0.119 0.127 0.140 0.161 0.161 0.162 0.161 0.156 0.102

Non-organic, greenhouse 0.161 0.166 0.175 0.190 0.190 0.190 0.189 0.186 0.151

Non-organic, no greenhouse 0.179 0.186 0.198 0.216 0.216 0.216 0.215 0.211 0.166

TSWV Organic 0.066 0.071 0.078 0.092 0.093 0.093 0.092 0.088 0.057

Non-organic, greenhouse 0.172 0.178 0.187 0.203 0.202 0.202 0.201 0.198 0.162

Non-organic, no greenhouse 0.185 0.192 0.204 0.223 0.223 0.224 0.222 0.218 0.172

In this sense, the posterior standard deviation for risk of a plot infection exhibits a con-

siderable sensitivity to hyperparameter specification. For instance, the risk of a ToMV

infection of a generic plot in an organic management system was estimated from 0.028

to 0.553 with 95% probability according to Ga1 scenario, but the subsequent interval in

the Un1 scenario was [0.008,0.734].

5. Discussion

In this paper we have proposed a Bayesian correlated model (GLMM) to study and

compare the risk of several virus infections in tomato and pepper plots under differ-

ent agroecosystem conditions. First, we estimated several models, maintaining model

specification but varying prior scenario default in accordance with different hyperprior

distributions for the random effects scale parameter. Next, we conducted a sensitivity

analysis to select the most stable model, in which effects of management conditions,

altitude and random individual effects were assessed by estimating different derived

quantities considered to be agronomically relevant.

Regarding the model covariates effect, the risk of plot infection was the quantity

chosen to analyse agronomic outcomes. The risk of plot infection was estimated in the

framework of mixed infections (with more than one virus) as well as in single infections

(with only one virus). All the quantities applied for a “generic” plot of the population of

each one of the agroecosystems considered. In the case of single infections, risk differ-

ence was also used to quantify differences among agroecosystems. Individual random

effects were evaluated by assessing differences in the estimation of the risk of infection

among plots managed under similar agroecosystem conditions. This enables the evalua-

tion of the contribution of the common and of the individual elements in the model, and

therefore the explanatory capacity of covariates.

In the case of mixed infections, organic agroecosystems exhibited lower prevalence

for a three viruses joint infection. Non organic plots, independently of the presence of a

greenhouse structure, showed a similar behaviour. Single infections were generally less
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prevalent or similar in organic systems than in conventional (non-organic with and with-

out greenhouse), while TSWV and CMV infections were less prevalent under organic

management; ToMV infection showed a slightly different behaviour pattern possibly

as a consequence of the way it is transmitted (mechanical transmission). Altitude ef-

fect was clearly negative in all viruses but displayed considerable variability among the

three viruses. Random effects behaviour was very regular in individuals belonging to

non-organic with greenhouse and non-organic with no greenhouse considering that in-

dividual effects did not generate great differences among plots’ risk infection estimates.

Organic individuals exhibited more variable results in this aspect, but in general we can

assume that all the fixed effects included in the model have a good explanatory capacity.

Sensitivity analysis was based on the methodology developed by Roos and Held

(2011) and Roos et al. (2015). Hellinger distance and sensitivity measure, together with

their corresponding calibration, allowed us to assess discrepancies in the estimation of

the fixed effects (regression coefficients), the random effects standard deviation σb as

well as the “generic” risk of infection among the prior scenarios tested. The evaluation

of the posterior mean of the regression coefficients, the graphical characterization of the

marginal posterior distribution of σb and the assessment of the standard deviation of the

posterior distribution of the risk of plot infection among the several modelling scenarios

completed the analysis. The outcomes obtained exhibited an insensitive behaviour of

the fixed effects to hyperprior alterations with Hellinger values very close to zero and

to each other. Only visual analysis of posterior means enabled us to detect a certain

instability among inferences obtained from models under gamma hyperdistributions.

The estimation of σb showed a highly sensitive behaviour: gamma hyperpriors re-

peatedly exhibited the most relevant differences showing the greatest sensitivity values

and the most divergent posterior distributions. In the case of risk infection estimation, in

spite of all the Hellinger distances were around zero, gamma hyperdistributions showed

interesting differences in terms of the standard deviation of the posterior distribution of

the risk of plot infection. We therefore agree with Browne and Draper (2006), Roos et

al. (2015), Roos and Held (2011), Gelman (2006), and Lunn et al. (2009) that gamma

hyperpriors in hierarchical models lack robustness and a sensitivity analysis must be car-

ried out in the Bayesian hierarchical framework to assess reliability of the performance.

Furthermore, we also conclude that the “noninformative” nature of a hyperprior does

not guarantee its impartiality in the inference process.

Appendix 1. The Hellinger distance

The Helliger distance (Le Cam, 2012) is a symmetric and invariant to any one-to-one

transformation measure of discrepancy between two probability distributions, f and g,

defined as follows
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H( f ,g) =
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where 0 ≤ H( f ,g)≤ 1, 0 represents no divergence, and 1 full divergence.

The Hellinger distances between two gamma, uniform and half-truncated distribu-
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In the case of posterior distributions π1(θθθ | D) and π2(θθθ | D), the Hellinger distance

can be approximated numerically at a finite set of K integration points as follows

H2(π1(θθθ | D),π2(θθθ | D)) =
1

2

K
∑

k=1

(

√

π1(θθθ | D)(k)−
√

π2(θθθ | D)(k)
)2

∆k, (A.1)

where the weights ∆k are provided by the trapezoidal rule.

Appendix 2. Calibration

The Hellinger distance can be calibrated to evaluate the importance of the observed dis-

crepancies by means of a reference parameter. Calibration was undertaken with respect

to the normal distribution with variance one. The Hellinger distance between densities

N(0,1) and N(µ,1) is
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H(N(0,1),N(µ,1)) =
√

1− exp(−µ2/8),

and consequently

µ=
√

−8log(1−H2(N(0,1),N(µ,1)))

Table A.2.1 shows a range of calibrated values µ with its subsequent Hellinger distance,

H(N(0,1),N(µ,1)).

Table A.2.1: Calibration of the Hellinger distance.

µ H(N(0,1),N(µ,1))

0 0

1 0.343

2 0.627

3 0.822

4 0.930

5 0.978

6 0.994

7 0.999

8 0.999

9 0.999

10 1

The sensitivity measure introduced previously can also be calibrated. Calibration of

the sensitivity value obtained, s, has been obtained following the subsequent equation:

C(s,µ′) = µ(s×H(N(0,1),N(µ′,1))) (A.2)

Interpretation of calibration can be conditioned by the choice of µ′, so that for a value

µ′ = 1, the value of s, would be comparable with the Hellinger distance obtained be-

tween two normal priors, N(0,1) and N(µ′ = 1,1) and the subsequent normal posteriors,

N(0,1) and N(C(s,µ′ = 1),1). It is important to note that if s > 1 then C(s,µ′) > µ′; if

s < 1 then C(s,µ′)< µ′; and if s = 1 then C(s,µ′) = µ′.
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