Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Diseño e Implementación de un Sistema de Control estable basado en Lógica Bor...
Información de la revista
Vol. 12. Núm. 4.
Páginas 476-487 (Octubre - Diciembre 2015)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
3784
Vol. 12. Núm. 4.
Páginas 476-487 (Octubre - Diciembre 2015)
Open Access
Diseño e Implementación de un Sistema de Control estable basado en Lógica Borrosa para optimizar el rendimiento de un sistema de Generación Fotovoltaico
Design and Implementation of a Stable Control System based on Fuzzy Logic in order to optimize the performance of a Photovoltaic Generation System
Visitas
3784
Maissa Farhata, Oscar Barambonesb,
Autor para correspondencia
oscar.barambones@ehu.es

Autor para correspondencia.
, Jose A. Ramosb, Eladio Duranc, Jose M. Andujarc
a Engineering School of Gabes, Tunez.
b Universidad del País Vasco, C/ Nieves Cano 12, 01006 Vitoria, España.
c Universidad de Huelva, España
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

En este trabajo se presenta un nuevo esquema de control para un sistema fotovoltaico aislado (PV) utilizando un controlador de lógica borrosa (FLC). El sistema de control diseñado proporciona un buen seguimiento de la tensión de referencia óptima, a la cual se genera la máxima potencia. El sistema fotovoltaico está conectado a una carga a través de un convertidor CC/CC elevador (boost). El controlador FLC proporciona el ciclo de trabajo (D) apropiado al convertidor CC/CC para que el sistema PV genere la máxima potencia. También se propone un método de análisis de la estabilidad del sistema en lazo cerrado. Aunque el análisis de la estabilidad está basado en la metodología de Lyapunov, es un análisis semicualitativo, ya que no se dispone de un modelo del sistema en lazo cerrado para realizar un análisis analítico. Tanto los resultados de simulación como las pruebas experimentales sobre un sistema PV comercial muestran que el FLC proporciona un buen seguimiento del punto de máxima potencia (MPP). Finalmente, se ha evaluado el funcionamiento del FLC sobre un sistema PV real formado por unas placas fotovoltaicas comerciales Atersa modelo A55. Para realizar las pruebas experimentales se ha implementado la estrategia de control sobre un procesador digital de señal DS1104 de dSPACE. Los resultados experimentales obtenidos demuestran la validez del esquema de control FLC sobre un sistema fotovoltaico comercial.

Palabras clave:
Sistemas fotovoltaicos
seguimiento del punto de máxima potencia
control borroso
función de Lyapunov
convertidor CC/CC.
Abstract

This paper presents a new control scheme for a standalone photovoltaic (PV) system based on a fuzzy-logic (FLC). The proposed control system provides good tracking for the optimal reference voltage, at which the maximum power generation is obtained. The photovoltaic system is connected to a load through a DC/DC boost converter. The FLC controller provides the appropriate duty cycle (D) to the DC/DC converter in order to get the maximum power from the PV system. A method for the stability analysis of the closed-loop system is also proposed. The stability analysis is based on the Lyapunov methods and is a semi-qualitative analysis because there is no closed loop system model available for the analytical analysis. Both simulation results and experimental tests on a real PV system show that the FLC provides good tracking for the maximum power point (MPP).Finally, the performance of the FLC on a real PV system consisting of a commercial solar panels Atersa model A55 is analyzed. To perform the experimental tests the proposed control strategy has been implemented on the dSPACE digital signal processor model DS1104. The experimental results demonstrate the good performance of the proposed FLC control scheme over a commercial photovoltaic system

Keywords:
Photovoltaic systems
tracking the maximum power point
fuzzy control
Lyapunov function
DC/DC converter.
Referencias
[Abderrahim et al., 2013]
E.F. Abderrahim, G. Fouad, E.M. Abdelmoinime.
Reference Voltage Optimizer for Maximum Power Tracking in Single-Phase Grid-Connected Photovoltaic Systems.
Journal of Control and Systems Engineering, 1 (2013), pp. 57-66
[Alajmi et al., 2011]
B.N. Alajmi, K.H. Ahmed, S.J. Finney, B.W. Williams.
Fuzzy-Logic-Control Approach of a Modified Hill-Climbing Method for Maximum Power Point in Microgrid Standalone Photovoltaic System.
IEEE Transactions on Power Electronics, 26 (2011), pp. 1022-1030
[Algazar et al., 2012]
M.M. Algazar, H. AL-Monier, H.A. EL-Halim, M. E El Kotb Salem.
Maximum Power Point Tracking Using Fuzzy Logic Control.
International Journal of Electrical Power & Energy Systems, 39 (2012), pp. 21-28
[Andújar J.M., 2014]
J.M. Andújar, A.J. Barragán.
Hibridación de sistemas borrosos para el modelado y control.
Revista Iberoamericana de Automática e Informática industrial, 11 (2014), pp. 127-141
[Andújar and Segura, 2012]
Andújar, J. M, Segura, F. (2012), Power Management Based on Sliding Control Applied to Fuel Cell System. A further Step toward the Hybrid Control Concept.Applied Energy.99, 213-225.
[Andújar and Barragán, 2007]
J.M. Andújar, A.J. Barragán, M.E. Gegúndez, M. Maestre.
Control Borroso Multivariable Basado en Heurística. Un Caso Práctico: Grúa Porta Contenedores.
Revista Iberoamericana de Automática e Informática industrial, 4 (2007), pp. 81-89
[Brunton et al., 2010]
Brunton S.L., Rowley C.W., Kulkarni S.R., Clarkson C. (2010), Maximum Power Point Tracking for Photovoltaic Optimization Using Ripple-Based Extremum Seeking Control, IEEE Trans. on Power Electronics Vol.25, No.10.
[Chokri and Mohamed, 2011]
B.S. Chokri, O. Mohamed.
Comparison of Fuzzy Logic And Neural Network In Maximum Power Point Tracker For PV Systems.
Electric Power Systems Research, 81 (2011), pp. 43-50
[Durán et al., 2009]
E. Durán, J.M. Andújar, J. Galan, M. Sidrach de Cardona.
Methodology and Experimental System for Measuring and Displaying I-V Characteristic Curves of PV Facilities.
Progress in Photovoltaics., 17 (2009), pp. 574-586
[Farhat et al., 2014]
M. Farhat, A. Flah, L. Sbita.
Photovoltaic Maximum Power Point Tracking Based on ANN Control.
International Review on Modelling and Simulations, 7 (2014), pp. 474-480
[Farhat and Sbita, 2012]
Farhat. M, Sbita.L, (2012), Advanced ANFIS-MPPT Control Algorithm for Sunshine photovoltaic Pumping Systems,” International Conference on Renewable Energies and Vehicular Technology
[Farhat and Sbita, 2011]
M. Farhat, L. Sbita.
Advanced Fuzzy MPPT Control Algorithm for Photovoltaic Systems.
Science Academy Transactions on Renewable Energy Systems Engineering and Technology, 1 (2011), pp. 29-36
[Fazel. et al., 2012]
T. Fazel, S. Zainal, M.A. Shahrin.
FPGA Implementation of a Single-Input Fuzzy Logic Controller for Boost Converter With the Absence of an External Analog-to-Digital Converter.
IEEE transactions on industrial electronics, 59 (2012), pp. 1208-1217
[Hannan. et al., 2010]
Hannan. M. A, Ghani. Abd. Z, Mohamed.A, (2010), An Enhanced Inverter Controller for PV Applications Using the dSPACE Platform, Hindawi Publishing Corporation, International Journal of Photoenergy.
[Hirosato., 2013]
Hirosato. S, (2013), Nonlinear Identification Using Single Input Connected Fuzzy Inference Model, 17th International Conference in Knowledge Based and Intelligent Information and Engineering Systems,.
[Jungyong and Shiho, 2012]
P. Jungyong, K. Shiho.
Maximum Power Point Tracking Controller for Thermoelectric Generators with Peak Gain Control of Boost DC–DC Converters.
Journal of Electronic Materials, 41 (2012), pp. 1242-1246
[Marcelo., 2009]
Marcelo. G .V,Jonas. R. G, Ernesto. R. F (2009), Modeling and circuit-based simulation of photovoltaic arrays, 10th Brazilian Power Electronics Conference (COBEP).
[Nevzat., 2010]
Nevzat. O, (2010), Recent Developments in Maximum Power Point Tracking Technologies for Photovoltaic Systems, Hindawi Publishing Corporation International Journal of Photoenergy.
[Ollervides. et al., 2010]
J. Ollervides, M. Santibáñez, A. Lama., A. Dzul..
Aplicación de Control Borroso a un Sistema de Suspensión Magnética: Comparación Experimental.
Revista Iberoamericana de Automática e Informática industrial, 7 (2010), pp. 1697-7912
[Patcharaprakiti et al., 2005]
N. Patcharaprakiti, P. Suttichai, Y. Sriuthaisiriwong.
Maximum Power Point Tracking Using Adaptive Fuzzy Logic Control for Grid-Connected Photovoltaic System.
Renewable Energy, 30 (2005), pp. 1771-1788
[Shiqiong. et al., 2010]
Z. Shiqiong, K. Longyun, S. Jing, G. Guifang.
A novel maximum power point tracking algorithms for stand-alone photovoltaic, system.
International Journal of Control, Automation and Systems, 8 (2010), pp. 1364-1371
[Trishan. and Patrick, 2007]
E. Trishan, L.C. Patrick.
Comparison of Photovoltaic Array Maximum Power Point Tracking, Techniques.
IEEE Trans. on Energy conversion, 22 (2007), pp. 439-449
[Villalva and Gazoli, 2009]
M.G. Villalva, J.R Gazoli, E.R. Filho.
Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays.
IEEE Transactions on power electronics, 24 (2009), pp. 1198-1208
[Zaidi. and Boudjema, 2010]
Zaidi. Z, F. Boudjema, (2010), Hybrid Control and Optimization of a Plus-Energy-House with DHWS, International Renewable Energy Congress IREC, Sousse, Tunisia.
Opciones de artículo
Herramientas