Skip to main content
Log in

Universal varieties of quasi-Stone algebras

  • Published:
Algebra universalis Aims and scope Submit manuscript

Abstract

The lattice of varieties of quasi-Stone algebras ordered by inclusion is an \({\omega+1}\) chain. It is shown that the variety \({\mathbf{Q_{2,2}}}\) (of height 13) is finite-to-finite universal (in the sense of Hedrlín and Pultr). Further, it is shown that this is sharp; namely, the variety \({\mathbf{Q_{3,1}}}\) (of height 12) is not finite-to-finite universal and, hence, no proper subvariety of \({\mathbf{Q_{2,2}}}\) is finite-to-finite universal. In fact, every proper subvariety of \({\mathbf{Q_{2,2}}}\) fails to be universal. However, \({\mathbf{Q_{1,2}}}\) (the variety of height 9) is shown to be finite-tofinite universal relative to \({\mathbf{Q_{2,1}}}\) (the variety of height 8). This too is sharp; namely, no proper subvariety of \({\mathbf{Q_{1,2}}}\) is finite-to-finite relatively universal. Consequences of these facts are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams M.E., Dziobiak W.: Finite-to-finite universal quasivarieties are Q-universal. Algebra Universalis 46, 253–283 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adams M.E., Dziobiak W.: Endomorphisms of distributive lattices with a quantifier. Internat. J. Algebra Comput. 17, 1349–1376 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Adams, M.E., Dziobiak, W., Sankappanavar, H.P.: Quasivarieties of quasi-Stone algebras (2015, preprint)

  4. Adams M.E., Koubek V., Sichler J.: Homomorphisms and endomorphisms of distributive lattices. Houston J. Math. 11, 129–145 (1985)

    MathSciNet  MATH  Google Scholar 

  5. Cignoli R.: Quantifiers on distributive lattices. Discrete Math. 96, 183–197 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Demlová M., Koubek V.: Endomorphism monoids of bands. Semigroup Forum 38, 305–329 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Demlová M., Koubek V.: Endomorphism monoids in small varieties of bands. Acta Sci. Math. (Szeged) 55, 9–20 (1991)

    MathSciNet  MATH  Google Scholar 

  8. Demlová M., Koubek V.: Endomorphism monoids in varieties of bands. Acta Sci. Math. (Szeged) 66, 477–516 (2000)

    MathSciNet  MATH  Google Scholar 

  9. Demlová M., Koubek V.: Weaker universality in semigroup varieties. Novi Sad J. Math. 34, 37–86 (2004)

    MathSciNet  MATH  Google Scholar 

  10. Gaitán H.: Priestley duality for quasi-Stone algebras. Studia Logica 64, 83–92 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goralčík P., Koubek V., Sichler J.: Universal varieties of (0, 1)-lattices. Canad. J. Math. 42, 470–490 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Halmos P.R.: Algebraic logic, I. Monadic Boolean algebras. Compositio Math. 12, 217–249 (1955)

    MathSciNet  Google Scholar 

  13. Hedrlín Z., Pultr A.: On full embeddings of categories of algebras. Illinois J. Math. 10, 392–406 (1966)

    MathSciNet  MATH  Google Scholar 

  14. Koubek, V.: Infinite image homomorphisms of distributive bounded lattices. In: Lectures in Universal Algebra (Szeged, 1983). Colloq. Math. Soc. J´anos Bolyai, vol. 43, pp. 241–281. North-Holland, Amsterdam (1985)

  15. Koubek V., Sichler J.: Universal varieties of semigroups. J. Austral. Math. Soc. (Series A) 36, 143–152 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  16. Priestley H.A.: Representation of distributive lattices by means of ordered Stone spaces. Bull. London Math. Soc. 2, 186–190 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pultr, A., Trnková, V.: Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories. North-Holland, Amsterdam (1980)

  18. Sankappanavar N.H., Sankappanavar H.P.: Quasi-Stone algebras. Math. Logic Quart. 39, 255–268 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sapir M.V.: The lattice of quasivarieties of semigroups. Algebra Universalis 21, 172–189 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sichler J.: Nonconstant endomorphisms of lattices. Proc. Amer. Math. Soc. 34, 67–70 (1972)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Adams.

Additional information

Presented by P. P. Pálfy.

Dedicated to Ervin Fried and Jiří Sichler

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adams, M.E., Dziobiak, W. & Sankappanavar, H.P. Universal varieties of quasi-Stone algebras. Algebra Univers. 76, 155–182 (2016). https://doi.org/10.1007/s00012-016-0400-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00012-016-0400-5

2010 Mathematics Subject Classification

Key words and phrases

Navigation