Skip to main content
Log in

The number of slim rectangular lattices

  • Published:
Algebra universalis Aims and scope Submit manuscript

Abstract

Slim rectangular lattices are special planar semimodular lattices introduced by G. Grätzer and E. Knapp in 2009. They are finite semimodular lattices L such that the ordered set Ji L of join-irreducible elements of L is the cardinal sum of two nontrivial chains. After describing these lattices of a given length n by permutations, we determine their number, |SRectL(n)|. Besides giving recursive formulas, which are effective up to about n = 1000, we also prove that |SRectL(n)| is asymptotically (n - 2)! · \({e^{2}/2}\). Similar results for patch lattices, which are special rectangular lattices introduced by G. Czédli and E. T. Schmidt in 2013, and for slim rectangular lattice diagrams are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abels H.: The gallery distance of flags. Order 8, 77–92 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bóna, M.: Combinatorics of permutations. Discrete Mathematics and its Applications (Boca Raton). Chapman & Hall/CRC, Boca Raton (2004)

  3. Chowla S., Herstein I.N., Moore W.K.: On recursions connected with symmetric groups. I. Canadian J. Math. 3, 328–334 (1951)

    MathSciNet  MATH  Google Scholar 

  4. Czédli G.: Representing homomorphisms of distributive lattices as restrictions of congruences of rectangular lattices. Algebra Universalis 67, 313–345 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Czédli G.: Coordinatization of join-distributive lattices. Algebra Universalis 71, 385–404 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Czédli G.: Patch extensions and trajectory colorings of slim rectangular lattices. Algebra Universalis 72, 125–154 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Czédli, G.: The asymptotic number of planar, slim, semimodular lattice diagrams. Order, first online July 14, 2015, DOI 10.1007/s11083-015-9361-0

  8. Czédli G., Dékány T., Ozsvárt L., Szakács N., Udvari B., On the number of slim, semimodular lattices. Math. Slovaca (in press). arXiv:1208.6173

  9. Czédli G., Grätzer G.: Notes on planar semimodular lattices. VII. Resections of planar semimodular lattices. Order 30, 847–858 (2013)

    MATH  Google Scholar 

  10. Czédli, G., Grätzer, G.: Planar semimodular lattices and their diagrams. In: Grätzer, G., Wehrung, F. (eds.) Lattice Theory: Special Topics and Applications. Birkhäuser (2014)

  11. Czédli G., Ozsvárt L., Udvari B.: How many ways can two composition series intersect?. Discrete Math. 312, 3523–3536 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Czédli G., Schmidt E.T.: How to derive finite semimodular lattices from distributive lattices?. Acta Math. Hungar. 121, 277–282 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Czédli G., Schmidt E.T.: The Jordan-Hölder theorem with uniqueness for groups and semimodular lattices. Algebra Universalis 66, 69–79 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Czédli G., Schmidt E.T.: Slim semimodular lattices. I. A visual approach. Order 29, 481–497 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Czédli G., Schmidt E.T.: Slim semimodular lattices. II. A description by patchwork systems. Order 30, 689–721 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Czédli G., Schmidt E.T.: Composition series in groups and the structure of slim semimodular lattices. Acta Sci. Math. (Szeged) 79, 369–390 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Erné, M., Heitzig, J., Reinhold, J.: On the number of distributive lattices. Electron. J. Combin. 9 (1), Research Paper 24 (2002)

  18. Grätzer G.: Lattice Theory: Foundation. Birkhäuser, Basel (2011)

    Book  MATH  Google Scholar 

  19. Grätzer G.: Notes on planar semimodular lattices. VI. On the structure theorem of planar semimodular lattices. Algebra Universalis 69, 301–304 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Grätzer G., Knapp E.: Notes on planar semimodular lattices. I. Construction. Acta Sci. Math. (Szeged) 73, 445–462 (2007)

    MathSciNet  MATH  Google Scholar 

  21. Grätzer G., Knapp E.: Notes on planar semimodular lattices. III. Congruences of rectangular lattices. Acta Sci. Math. (Szeged) 75, 29–48 (2009)

    MATH  Google Scholar 

  22. Grätzer G., Knapp E.: Notes on planar semimodular lattices. IV. The size of a minimal congruence lattice representation with rectangular lattices. Acta Sci. Math. (Szeged) 76, 3–26 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Grätzer G., Nation J.B.: A new look at the Jordan-H¨older theorem for semimodular lattices. Algebra Universalis 64, 309–311 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Grätzer G., Quackenbush R.W.: The variety generated by planar modular lattices. Algebra Universalis 63, 187–201 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Heitzig J., Reinhold J.: Counting finite lattices. Algebra Universalis 48, 43–53 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kelly D., Rival I.: Planar lattices. Canad. J. Math. 27, 636–665 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pawar M.M., Waphare B.N.: Enumeration of nonisomorphic lattices with equal number of elements and edges. Indian J. Math. 45, 315–323 (2003)

    MathSciNet  MATH  Google Scholar 

  28. Schmidt E.T.: Congruence lattices and cover-preserving embeddings of finite length semimodular lattices. Acta Sci. Math. (Szeged) 77, 47–52 (2011)

    MathSciNet  MATH  Google Scholar 

  29. Stanley R.P.: Supersolvable lattices. Algebra Universalis 2, 197–217 (1972)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gábor Czédli.

Additional information

Presented by J. Kung.

This research was supported by the European Union and co-funded by the European Social Fund under the project “Telemedicine-focused research activities on the field of Mathematics, Informatics and Medical sciences” of project number “TÁMOP-4.2.2.A-11/1/KONV-2012-0073”, and by NFSR of Hungary (OTKA), grant numbers K83219 and K104251.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Czédli, G., Dékány, T., Gyenizse, G. et al. The number of slim rectangular lattices. Algebra Univers. 75, 33–50 (2016). https://doi.org/10.1007/s00012-015-0363-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00012-015-0363-y

2010 Mathematics Subject Classification

Key words and phrases

Navigation