Skip to main content
Log in

Joins of subalgebras and normals in 0-regular varieties

  • Published:
Algebra universalis Aims and scope Submit manuscript

Abstract

In any 0-normal variety (0-regular variety in which {0} is a subalgebra), every congruence class containing 0 is a subalgebra. These “normal subalgebras” of a fixed algebra constitute a lattice, isomorphic to its congruence lattice. We are interested in those 0-normal varieties for which the join of two normal subalgebras in the lattice of normal subalgebras of an algebra equals their join in the lattice of subalgebras, as happens with groups and rings. We characterise this property in terms of a Mal’cev condition, and use examples to show it is strictly stronger than being ideal determined but strictly weaker than being 0-coherent (classically ideal determined) and does not imply congruence permutability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beutler E.: An ideal theoretic characterization of varieties of abelian groups. Algebra Universalis 8, 91–100 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bourn D., Janelidze G.: Characterization of protomodular varieties of universal algebras. Theory Appl. Categ. 11, 143–147 (2003)

    MathSciNet  MATH  Google Scholar 

  3. Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra. http://www.math.uwaterloo.ca/~snburris/htdocs/ualg.html

  4. Fearnley-Sander D., Stokes T.:: Varieties of equality structures. Internat. J. Algebra Comput. 13, 463–480 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fichtner K.: Fine Bermerkung über Mannigfaltigkeithen universeller Algebren mit Idealen. Monatsh. d. Deutsch. Akad. d. Wiss. (Berlin) 12, 21–25 (1970)

    MathSciNet  MATH  Google Scholar 

  6. Gumm H.P., Ursini A: Ideals in universal algebras. Algebra Universalis 19, 45–54 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  7. Janelidzea G., Márki L., Tholen W.: Semi-abelian categories. J. Pure Appl. Algebra 168, 367–386 (2002)

    Article  MathSciNet  Google Scholar 

  8. Janelidzea, G., Márki, L., Tholen, W., Ursini, A.: Ideal-determined categories. Cahiers Topologie Géom. Différentielle Catég. LI-2, 115–125(2010)

  9. Johnstone, P.: A note on the semiabelian variety of Heyting semilattices. In: Galois Theory, Hopf Algebras, and Semiabelian Categories. Fields Inst. Commun., vol. 43, pp. 317–318. Amer. Math. Soc. (2004)

  10. Köhler P.: Brouwerian semilattices: the lattice of total subalgebras. Banach Center Publ. 9, 47–56 (1982)

    Google Scholar 

  11. McConnell N.R., Stokes T.E.: Radicals of 0-regular algebras. Acta Math. Hungar. 113, 19–37 (2006)

    Article  MathSciNet  Google Scholar 

  12. Stokes T.E.:: On EQ-monoids. Acta Sci. Math. (Szeged) 72, 471–496 (2006)

    MathSciNet  Google Scholar 

  13. Ursini, A.: Osservazioni sulle varieta BIT. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 7, 205–211 (1983) (Italian)

  14. Ursini A.: On subtractive varieties I. Algebra Universalis 31, 204–222 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas McConnell.

Additional information

Presented by T. Kowalski.

Dedicated to Brian Davey on the occasion of his 65th birthday

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McConnell, N., Stokes, T. Joins of subalgebras and normals in 0-regular varieties. Algebra Univers. 74, 293–304 (2015). https://doi.org/10.1007/s00012-015-0344-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00012-015-0344-1

2010 Mathematics Subject Classification

Keywords and phrases

Navigation