Skip to main content
Log in

Representing some families of monotone maps by principal lattice congruences

  • Published:
Algebra universalis Aims and scope Submit manuscript

Abstract

For a lattice L with 0 and 1, let Princ(L) denote the set of principal congruences of L. Ordered by set inclusion, it is a bounded ordered set. In 2013, G. Grätzer proved that every bounded ordered set is representable as Princ(L); in fact, he constructed L as a lattice of length 5. For {0, 1}-sublattices \({A \subseteq B}\) of L, congruence generation defines a natural map Princ(A) \({\longrightarrow}\) Princ(B). In this way, every family of {0, 1}-sublattices of L yields a small category of bounded ordered sets as objects and certain 0-separating {0, 1}-preserving monotone maps as morphisms such that every hom-set consists of at most one morphism. We prove the converse: every small category of bounded ordered sets with these properties is representable by principal congruences of selfdual lattices of length 5 in the above sense. As a corollary, we can construct a selfdual lattice L in G. Grätzer's above-mentioned result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bogart, K.P., Freese, R., Kung, J.P.S. (eds): The Dilworth Theorems. Selected papers of Robert P. Dilworth. Birkhäuser, Boston (1990)

  2. Czédli G.: Representing homomorphisms of distributive lattices as restrictions of congruences of rectangular lattices. Algebra Universalis 67, 313–345 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Czédli G.: Representing a monotone map by principal lattice congruences. Acta Math. Hungar. 147, 12–18 (2015)

    Article  MathSciNet  Google Scholar 

  4. Czédli G.: An independence theorem for ordered sets of principal congruences and automorphism groups of bounded lattices. Acta Sci. Math. 82, 3–18 (2016)

    MathSciNet  Google Scholar 

  5. Czédli G.: The ordered set of principal congruences of a countable lattice. Algebra Universalis 75, 351–380 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Czédli, G.: Diagrams and rectangular extensions of planar semimodular lattices. Algebra Universalis, to appear. arXiv:1412.4453

  7. Czédli G., Schmidt E.T.: Finite distributive lattices are congruence lattices of almost-geometric lattices. Algebra Universalis 65, 91–108 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Funayama N., Nakayama T.: On the distributivity of a lattice of lattice-congruences. Proc. Imp. Acad. Tokyo 18, 553–554 (1942)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gillibert, P.; Wehrung, F.: From objects to diagrams for ranges of functors. Lecture Notes in Mathematics 2029. Springer, Heidelberg (2011)

  10. Grätzer, G.: The Congruences of a Finite Lattice. A Proof-by-picture Approach. Birkhäuser, Boston (2006)

  11. Grätzer G.: Lattice Theory: Foundation. Birkhäuser, Basel (2011)

    Book  MATH  Google Scholar 

  12. Grätzer G.: The order of principal congruences of a bounded lattice. Algebra Universalis 70, 95–105 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Grätzer G.: A technical lemma for congruences of finite lattices. Algebra Universalis 72, 53–55 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Grätzer G.: Congruences and prime-perspectivities in finite lattices. Algebra Universalis 74, 351–359 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Grätzer G., Knapp E.: Notes on planar semimodular lattices. III. Congruences of rectangular lattices. Acta Sci. Math. (Szeged) 75, 29–48 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Grätzer G., Lakser H.: Homomorphisms of distributive lattices as restrictions of congruences. Canad. J Math. 38, 1122–1134 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. Grätzer G., Lakser H.: Homomorphisms of distributive lattices as restrictions of congruences. II. Planarity and automorphisms. Canad. J Math. 46, 3–54 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Grätzer G., Lakser H.: Representing homomorphisms of congruence lattices as restrictions of congruences of isoform lattices. Acta Sci. Math. (Szeged) 75, 393–421 (2009)

    MathSciNet  Google Scholar 

  19. Grätzer G., Lakser H., Schmidt E.T.: Isotone maps as maps of congruences. I. Abstract maps. Acta Math. Hungar. 75, 105–135 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Grätzer G., Lakser H., Schmidt E.T.: Congruence lattices of finite semimodular lattices. Canad. Math. Bull. 41, 290–297 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Grätzer G., Lakser H., Schmidt E.T.: Isotone maps as maps of congruences. II. Concrete maps. Acta Math. Hungar. 92, 233–238 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Grätzer G., Schmidt E.T.: On congruence lattices of lattices. Acta Math. Acad. Sci. Hungar. 13, 179–185 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  23. Grätzer G., Schmidt E.T.: An extension theorem for planar semimodular lattices. Period. Math. Hungar. 69, 32–40 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Huhn A. P.: On the representation of distributive algebraic lattices. III. Acta Sci. Math. (Szeged) 53, 11–18 (1989)

    MathSciNet  MATH  Google Scholar 

  25. Kamara M.: Zur Konstruktion vollständiger Polaritätsverbände. (German) J. Reine Angew. Math. 299/300, 280–286 (1978)

    MathSciNet  MATH  Google Scholar 

  26. Kelly D., Rival I.: Planar lattices. Canad. J. Math. 27, 636–665 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nation, J. B.: Notes on Lattice Theory. http://www.math.hawaii.edu/~jb/books.html

  28. Růžička P.: Free trees and the optimal bound in Wehrung’s theorem. Fund. Math. 198, 217–228 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wehrung F.: A solution to Dilworth’s congruence lattice problem. Adv. Math. 216, 610–625 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wehrung, F.: Schmidt and Pudlák’s approaches to CLP. In: Grätzer, G., Wehrung, F. (eds.) Lattice Theory: Special Topics and Applications I, pp. 235–296. Birkhäuser, Basel (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gábor Czédli.

Additional information

Presented by B. Davey.

Dedicated to George Grätzer on the occasion of his eightieth birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Czédli, G. Representing some families of monotone maps by principal lattice congruences. Algebra Univers. 77, 51–77 (2017). https://doi.org/10.1007/s00012-016-0419-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00012-016-0419-7

2010 Mathematics Subject Classification

Key words and phrases

Navigation