Skip to main content
Log in

The derived Picard group of an affine Azumaya algebra

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We describe the derived Picard group of an Azumaya algebra A on an affine scheme X in terms of global sections of the constant sheaf of integers on X, the Picard group of X, and the stabilizer of the Brauer class of A under the action of \(\mathrm {Aut}(X)\). In particular, we find that the derived Picard group of an Azumaya algebra is generally not isomorphic to that of the underlying scheme. In the case of the trivial Azumaya algebra, our result refines Yekutieli’s description of the derived Picard group of a commutative algebra. We also get, as a corollary, an alternate proof of a result of Antieau which relates derived equivalences to Brauer equivalences for affine Azumaya algebras. The example of a Weyl algebra in finite characteristic is examined in some detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The results of [20] hold in the much broader setting of sheaves of Azumaya algebras \(\mathscr {A}\) on quasi-compact quasi-separated schemes X with a finite number of connected components. The characteristic restriction is as follows: For a K-linear additive invariant E, with K a commutative ring, the product r of the ranks of \(\mathscr {A}\) on the components of X must be a unit in K.

  2. These will be tilting complexes in the usual sense of Rickard [23, Theorem 1.6], [16].

References

  1. Antieau, B.: Twisted derived equivalences for affine schemes. preprint arXiv:1311.2332

  2. Belov-Kanel, A., Kontsevich, M.: The Jacobian conjecture is stably equivalent to the Dixmier conjecture. Mosc. Math. J. 7(2), 209–218 (2007)

    MathSciNet  MATH  Google Scholar 

  3. Bezrukavnikov, R., Mirković, I., Rumynin, D., Riche, S.: Localization of modules for a semisimple Lie algebra in prime characteristic. Ann. Math. 945–991 (2008)

  4. Brown, K., Goodearl, K.: Homological aspects of Noetherian PI Hopf algebras and irreducible modules of maximal dimension. J. Algebra 198(1), 240–265 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Caenepeel, S.: Brauer Groups, Hopf Algebras, and Galois Theory, vol. 4. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  6. Cortiñas, G., Weibel, C.: Homology of Azumaya algebras. Proc. Am. Math. Soc. 121(1), 53–55 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Eisenbud, D., et al.: Commutative Algebra with a View Toward Algebraic Geometry, vol. 27. Springer, New York (1995)

    MATH  Google Scholar 

  8. Hartshorne, R.: Residues and duality, lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64. with an appendix by P. Deligne. Lecture Notes in Mathematics 20 (1966)

  9. Hazrat, R., Hoobler, R.T.: \({K}\)-theory of Azumaya algebras over schemes. Commun. Algebra 41(4), 1268–1277 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hazrat, R., Millar, J.R.: A note on \({K}\)-theory of Azumaya algebras. Commun. Algebra 38(3), 919–926 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Keller, B.: Hochschild cohomology and derived Picard groups. J. Pure Appl. Algebra 190(1), 177–196 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu, Q., Erné, R.: Algebraic Geometry and Arithmetic Curves, vol. 6. Oxford University Press, Oxford (2002)

    Google Scholar 

  13. Milne, J.S.: Etale Cohomology, vol. 33. Princeton University Press, Princeton (1980)

    Book  MATH  Google Scholar 

  14. Revoy, P.: Algèbres de Weyl en caractéristique \(p\). C. R. Acad. Sci. Paris Sér. 276, A225–A228 (1973)

    MATH  Google Scholar 

  15. Rickard, J.: Morita theory for derived categories. J. Lond. Math. Soc. 39(3), 436–456 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rickard, J.: Derived equivalences as derived functors. J. Lond. Math. Soc. 43(1), 37–48 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rinehart, G.S.: Differential forms on general commutative algebras. Trans. Am. Math. Soc. 195–222 (1963)

  18. Rouquier, R., Zimmermann, A.: Picard groups for derived module categories. Proc. Lond. Math. Soc. 87(01), 197–225 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Schack, S.D.: Bimodules, the Brauer group, Morita equivalence, and cohomolgy. J. Pure Appl. Algebra 80(3), 315–325 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tabuada, G., Van den Bergh, M.: Noncommutative motives of Azumaya algebras. J. Inst. Math. Jussieu 14(02), 379–403 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Weibel, C.A.: An introduction to homological algebra, vol. 38. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  22. Yekutieli, A.: Duality and tilting for commutative DG rings. preprint arXiv:1312.6411

  23. Yekutieli, A.: Dualizing complexes, Morita equivalence and the derived Picard group of a ring. J. Lond. Math. Soc. 60(3), 723–746 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yekutieli, A.: Derived equivalences between associative deformations. J. Pure Appl. Algebra 214, 1469–1476 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Thanks to Amnon Yekutieli for pointing out a number of helpful references. Thanks also to Ben Antieau for a number of thoughtful comments and to James Zhang, whose inquiries are responsible for the materials of Sect. 6. Thanks to the referee for many helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cris Negron.

Additional information

This work was supported by NSF Postdoctoral Research Fellowship DMS-1503147.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Negron, C. The derived Picard group of an affine Azumaya algebra. Sel. Math. New Ser. 23, 1449–1468 (2017). https://doi.org/10.1007/s00029-016-0249-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-016-0249-7

Mathematics Subject Classification

Navigation