Skip to main content
Log in

Coherent rings, fp-injective modules, dualizing complexes, and covariant Serre–Grothendieck duality

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

For a left coherent ring A with every left ideal having a countable set of generators, we show that the coderived category of left A-modules is compactly generated by the bounded derived category of finitely presented left A-modules (reproducing a particular case of a recent result of Št’ovíček with our methods). Furthermore, we present the definition of a dualizing complex of fp-injective modules over a pair of noncommutative coherent rings A and B, and construct an equivalence between the coderived category of A-modules and the contraderived category of B-modules. Finally, we define the notion of a relative dualizing complex of bimodules for a pair of noncommutative ring homomorphisms \(A\longrightarrow R\) and \(B\longrightarrow S\), and obtain an equivalence between the R / A-semicoderived category of R-modules and the S / B-semicontraderived category of S-modules. For a homomorphism of commutative rings \(A\longrightarrow R\), we also construct a tensor structure on the R / A-semicoderived category of R-modules. A vision of semi-infinite algebraic geometry is discussed in the introduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Becker, H.: Models for singularity categories. Adv. Math. 254, 187–232 (2014). arXiv:1205.4473 [math.CT]

    Article  MathSciNet  MATH  Google Scholar 

  2. Bezrukavnikov, R., Positselski, L.: On semi-infinite cohomology of finite-dimensional graded algebras. Compos. Math. 146(2), 480–496 (2010). arXiv:0803.3252 [math.QA]

    Article  MathSciNet  MATH  Google Scholar 

  3. Christensen, L.W., Frankild, A., Holm, H.: On Gorenstein projective, injective, and flat dimensions—a functorial description with applications. J. Algebra 302(1), 231–279 (2006). arXiv:math.AC/0403156

    Article  MathSciNet  MATH  Google Scholar 

  4. Efimov, A.I., Positselski, L.: Coherent analogues of matrix factorizations and relative singularity categories. Algebra Number Theory 9(5), 1159–1292 (2015). arXiv:1102.0261 [math.CT]

    Article  MathSciNet  MATH  Google Scholar 

  5. Eklof, P.C., Trlifaj, J.: How to make Ext vanish. Bull. Lond. Math. Soci. 33(1), 41–51 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gillespie, J.: Model structures on exact categories. J. Pure Appl. Algebra 215(12), 2892–2902 (2011). arXiv:1009.3574 [math.AT]

    Article  MathSciNet  MATH  Google Scholar 

  7. Gruson, L., Jensen, C.U.: Dimensions cohomologiques reliées aux foncteurs \(\varprojlim ^{(i)}\). In: Dubreil P., Malliavin M.-P. (eds) Algebra Seminar, 33rd Year. Lecture Notes in Math. vol. 867, pp. 234–294 (1981)

  8. Hovey, M.: Cotorsion pairs, model category structures, and representation theory. Math. Zeitschrift 241(3), 553–592 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Iyengar, S., Krause, H.: Acyclicity versus total acyclicity for complexes over noetherian rings. Doc. Math. 11, 207–240 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Jørgensen, P.: The homotopy category of complexes of projective modules. Adv. Math. 193(1), 223–232 (2005). arXiv:math.RA/0312088

    Article  MathSciNet  MATH  Google Scholar 

  11. Krause, H.: The stable derived category of a Noetherian scheme. Compos. Math. 141(5), 1128–1162 (2005). arXiv:math.AG/0403526

    Article  MathSciNet  MATH  Google Scholar 

  12. Krause, H.: Approximations and adjoints in homotopy categories. Math. Ann. 353(3), 765–781 (2012). arXiv:1005.0209 [math.CT]

    Article  MathSciNet  MATH  Google Scholar 

  13. Mao, L., Ding, N.: Notes on \(FP\)-projective modules and \(FP\)-injective modules. In: Chen J., Ding N., Marubayashi H. (eds) Advances in Ring Theory, Proceedings of the 4th China–Japan–Korea International Conference, June 2004, pp. 151–166. World Scientific (2005)

  14. Mitchell, B.: The cohomological dimension of a directed set. Can. J. Math. 25(2), 233–238 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  15. Miyachi, J.: Derived categories and Morita duality theory. J. Pure Appl. Algebra 128(2), 153–170 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Murfet, D.: The mock homotopy category of projectives and Grothendieck duality. Ph.D. Thesis, Australian National University (2007). http://www.therisingsea.org/thesis.pdf

  17. Porta, M., Shaul, L., Yekutieli, A.: On the homology of completion and torsion. Algebras Represent. Theory 17(1), 31–67 (2014). arXiv:1010.4386 [math.AC]

    Article  MathSciNet  MATH  Google Scholar 

  18. Positselski, L.: Homological algebra of semimodules and semicontramodules: semi-infinite homological algebra of associative algebraic structures. Appendix C in collaboration with D. Rumynin; Appendix D in collaboration with S. Arkhipov. Monografie Matematyczne vol. 70, Birkhäuser/Springer, Basel, xxiv+349 pp. (2010) arXiv:0708.3398 [math.CT]

  19. Positselski, L.: Two kinds of derived categories, Koszul duality, and comodule-contramodule correspondence. Memoirs of the American Math Society, vol. 212, No. 996, vi+133 pp. (2011) arXiv:0905.2621 [math.CT]

  20. Positselski, L.: Contraherent cosheaves. arXiv:1209.2995 [math.CT]

  21. Positselski, L.: Semi-infinite algebraic geometry. Slides of the Presentation at the Conference “Some Trends in Algebra 2015”, Prague (2015). http://www.karlin.mff.cuni.cz/~sta/pres/positselski.pdf, http://positselski.narod.ru/semi-inf-nopause.pdf, http://positselski.narod.ru/semi-inf.pdf

  22. Positselski, L.: Dedualizing complexes and MGM duality. J. Pure Appl. Algebra 220(12), 3866–3909 (2016). arXiv:1503.05523 [math.CT]

    Article  MathSciNet  MATH  Google Scholar 

  23. Stenström, B.: Coherent rings and \(FP\)-injective modules. J. Lond. Math. Soc. (2) 2(2), 323–329 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  24. Št’ovíček, J.: On purity and applications to coderived and singularity categories. arXiv:1412.1615 [math.CT]

  25. Trlifaj, J.: Covers, envelopes, and cotorsion theories. Lecture Notes for the Workshop “Homological Methods in Module Theory”, Cortona (2000). http://matematika.cuni.cz/dl/trlifaj/NALG077cortona.pdf

  26. Yekutieli, A.: Dualizing complexes over noncommutative graded algebras. J. Algebra 153(1), 41–84 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yekutieli, A., Zhang, J.J.: Rings with Auslander dualizing complexes. J. Algebra 213(1), 1–51 (1999). arXiv:math.RA/9804005

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid Positselski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Positselski, L. Coherent rings, fp-injective modules, dualizing complexes, and covariant Serre–Grothendieck duality. Sel. Math. New Ser. 23, 1279–1307 (2017). https://doi.org/10.1007/s00029-016-0290-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-016-0290-6

Mathematics Subject Classification

Navigation