Skip to main content
Log in

W-algebras, higher rank false theta functions, and quantum dimensions

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

Motivated by appearances of Rogers’ false theta functions in the representation theory of the singlet vertex operator algebra, for each finite-dimensional simple Lie algebra of ADE type, we introduce higher rank false theta functions as characters of atypical modules of certain W-algebras and compute asymptotics of irreducible characters which allows us to determine quantum dimensions of the corresponding modules. In the \({{\text {s}}\ell }_2\)-case, we recover many results from Bringmann and Milas (IMRN 21:11351–11387, 2015).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adamović, D., Milas, A.: Logarithmic intertwining operators and \(W(2,2p-1)\)-algebras. J. Math. Phys. 48, 073503 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adamović, D., Milas, A.: On the triplet vertex algebra \(W(p)\). Adv. Math. 217, 2664–2699 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Adamovic, D., Milas, A.: An analogue of modular BPZ equation in logarithmic (super)conformal field theory. Contemp. Math. 497, 1–17 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Adamović, D., Milas, A.: \(C_2\)-cofinite \({\cal{W}}\)-algebras and their logarithmic modules. In: Proceedings of the Conference “Conformal Field Theories and Tensor Categories”, Beijing, June 2011. Springer (2014)

  5. Adamović, D., Lin, X., Milas, A.: \(ADE\) subalgebras of the triplet vertex algebra \(\cal {W}\) (p): \(A\)-series. Commun. Contemp. Math. 15, 1350028 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Andrews, G., Berndt, B.: Ramanujan’s Lost Notebook, vol. 2. Springer, Berlin (2009)

    MATH  Google Scholar 

  7. Arakawa, T.: Representation theory of \(W\)-algebras. Invent. Math. 169, 219–320 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Borcherds, R.: Vertex algebras, Kac–Moody algebras, and the Monster. Proc. Natl. Acad. Sci. USA 83, 3068–3071 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bringmann, K., Creutzig, T., Rolen, L.: Negative index Jacobi forms and quantum modular forms. Res. Math. Sci. 1, 1–32 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bringmann, K., Milas, A.: \(W\)-algebras, false theta functions and quantum modular forms. I.M.R.N 21, 11351–11387 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Creutzig, T., Milas, A.: The false theta functions and the Verlinde formula. Adv. Math. 262, 520–545 (2014). arXiv:1309.6037

    Article  MathSciNet  MATH  Google Scholar 

  12. Creutzig, T., Milas, A.: Higher rank partial and false theta functions and representation theory (submitted). arXiv:1607.08563

  13. Creutzig, T., Milas, A., Rupert, M.: Logarithmic link invariants of \(\overline{U}_q^H(\mathfrak{sl} _2)\) and asymptotic dimensions of singlet vertex algebras (submitted). arXiv:1605.05634

  14. Creutzig, T., Milas, A., Wood, S.: On regularized quantum dimension of the singlet vertex algebras and false theta functions. I.M.R.N (2016), rnw037. arXiv:1411.3282

  15. De Sole, A., Kac, V.: Finite vs affine W-algebras. Jpn. J. Math. 1, 137–261 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Eichler, M., Zagier, D.: The Theory of Jacobi Forms. Progress in Mathematics 55. Birkhauser-Verlag, Basel (1985)

    Book  MATH  Google Scholar 

  17. Etingof, P.: A uniform proof of the Macdonald–Mehta–Opdam identity for finite Coxeter groups. Math. Res. Lett. 17, 275–282 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Feigin, B., Tipunin, I.: W-algebras connected with simple Lie algebras, preprint. arXiv:1002.5047

  19. Feigin, B., Gaĭnutdinov, A.M., Semikhatov, A.M., Yu Tipunin, I.: The Kazhdan–Lusztig correspondence for the representation category of the triplet \(W\)-algebra in logarithmic conformal field theories (Russian). Teor. Mat. Fiz. 148(3), 398–427 (2006)

    Article  MATH  Google Scholar 

  20. Feigin, B., Gaĭnutdinov, A., Semikhatov, A., Tipunin, I.: Logarithmic extensions of minimal models: characters and modular transformations. Nucl. Phys. B 757, 303–343 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Folsom, A., Ono, K., Rhoades, R.: Mock theta functions and quantum modular forms. Forum Math. \(\Pi \) 1:e2 (2013)

  22. Frenkel, E., Ben-Zvi, D.: Vertex Algebras and Algebraic Curves, Mathematical Surveys and Monographs, 88. American Mathematical Society, Providence (2001)

    MATH  Google Scholar 

  23. Frenkel, I., Lepowsky, J., Meurman, A.: Vertex Operator Algebras and the Monster Pure and Applied Mathematics, vol. 134. Academic Press, London (1988)

    MATH  Google Scholar 

  24. Fuchs, J., Hwang, S., Semikhatov, A., Tipunin, I.: Nonsemisimple fusion algebras and the Verlinde formula. Commun. Math. Phys. 247(3), 713–742 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Garoufalidis, S., Vuong, T.: A stability conjecture for the colored Jones polynomial, preprint (2013)

  26. Gannon, T.: Lattices and theta functions. Ph.D. thesis, McGill (1991)

  27. Goodman, R., Wallach, N.: Symmetry, Representations and Invariants, vol. 66. Springer, Dordrecht (2009)

    Book  MATH  Google Scholar 

  28. Lawrence, R., Zagier, D.: Modular forms and quantum invariants of 3-manifolds. Asian J. Math. 3, 93–108 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lepowsky, J., Li, H.: Introduction to Vertex Operator Algebras and Their Representations. Birkhauser, Boston (2003)

    MATH  Google Scholar 

  30. Milas, A.: Characters of modules of irrational vertex algebras. In: Contributions in Mathematical and Computational Sciences (Proceedings of the Conference on Vertex Algebras and Automorphic Forms), Heidelberg, vol. 8, pp. 1–29 (2014)

  31. Milas, A., Penn, M.: Lattice vertex algebras and combinatorial bases: general case and \(\cal{W}\)-algebras. N.Y. J. Math. 18, 621–650 (2012)

  32. Semikhatov, A.: Virasoro central charges for Nichols algebras. In: Bai, C., Fuchs, J., Huang, Y.-Z., Kong, L., Runkel, I., Schweigert, C. (eds.) Mathematical Lectures from Peking University, vol. IX, pp. 67–92 (2014)

  33. Vignéras, M.-F.: Séries thêta des formes quadratiques indéfinies. Modular Functions of One Variable VI. Springer, Berlin (1977)

    MATH  Google Scholar 

  34. Warnaar, O.: Partial theta functions. I. Beyond the last notebook. Proc. Lond. Math. Soc. 87, 363–395 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zagier, D.: Valeurs des fonctions zêta des corps quadratiques réels aux entiers négatifs, Journées Arithmetiques de Caen 1976. Astérisque 41–42, 135–151 (1977)

    MATH  Google Scholar 

  36. Zagier, D.: Vassiliev invariants and a strange identity related to the Dedekind eta-function. Topology 40, 945–960 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zagier, D.: Quantum modular forms. In: Quanta of Maths: Conference in Honor of Alain Connes, Clay Mathematics Proceedings 11. AMS and Clay Mathematics Institute, pp. 659-675 (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antun Milas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bringmann, K., Milas, A. W-algebras, higher rank false theta functions, and quantum dimensions. Sel. Math. New Ser. 23, 1249–1278 (2017). https://doi.org/10.1007/s00029-016-0289-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-016-0289-z

Keywords

Mathematics Subject Classification

Navigation