Skip to main content
Log in

Noncommutative Schur functions, switchboards, and Schur positivity

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We review and further develop a general approach to Schur positivity of symmetric functions based on the machinery of noncommutative Schur functions. This approach unifies ideas of Assaf, Lam, and Greene and the second author.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Assaf, S.H.: Dual equivalence graphs and a combinatorial proof of LLT and Macdonald positivity. arXiv:1005.3759v5 (2013)

  2. Assaf, S.H.: Dual equivalence and Schur positivity, preprint (2014) (The content of this paper has been included in [3])

  3. Assaf, S.H.: Dual equivalence graphs I: a new paradigm for Schur positivity. Forum Math. Sigma 3, e12 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blasiak, J., Liu, R.I.: Kronecker coefficients and noncommutative super Schur functions. arXiv:1510.00644

  5. Blasiak, J.: Haglund’s conjecture on 3-column Macdonald polynomials. Math. Z. 283, 601–628 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Blasiak, J.: What makes a D\(_0\) graph Schur positive? J. Algebr. Comb. (2016). doi:10.1007/s10801-016-0685-7

  7. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24, 235–265 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carré, C., Leclerc, B.: Splitting the square of a Schur function into its symmetric and antisymmetric parts. J. Algebr. Comb. 4, 201–231 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Edelman, P., Greene, C.: Balanced tableaux. Adv. Math. 63, 42–99 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fishel, S.: Statistics for special \(q, t\)-Kostka polynomials. Proc. Am. Math. Soc. 123, 2961–2969 (1995)

    MathSciNet  MATH  Google Scholar 

  11. Fomin, S., Greene, C.: Noncommutative Schur functions and their applications. Discrete Math. 193, 179–200 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fomin, S., Stanley, R.P.: Schubert polynomials and the nil-Coxeter algebra. Adv. Math. 103, 196–207 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Garsia, A.M., Haiman, M.: A graded representation model for Macdonald’s polynomials. Proc. Natl. Acad. Sci. USA 90, 3607–3610 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gessel, I.M.: Multipartite \(P\)-partitions and inner products of skew Schur functions. Contemp. Math. 34, 289–317 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. Grojnowski, I., Haiman, M.: Affine Hecke algebras and positivity of LLT and Macdonald polynomials, preprint (2007)

  16. Haglund, J., Haiman, M., Loehr, N.: A combinatorial formula for Macdonald polynomials. J. Am. Math. Soc. 18, 735–761 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Haglund, J., Haiman, M., Loehr, N., Remmel, J.B., Ulyanov, A.: A combinatorial formula for the character of the diagonal coinvariants. Duke Math. J. 126, 195–232 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Haiman, M.: Combinatorics, symmetric functions, and Hilbert schemes. In: Mazur, B. (ed.) Current Developments in Mathematics, 2002, pp. 39–111. Int. Press, Somerville (2003)

  19. Kashiwara, M., Tanisaki, T.: Parabolic Kazhdan–Lusztig polynomials and Schubert varieties. J. Algebra 249, 306–325 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kazhdan, D., Lusztig, G.: Representations of Coxeter groups and Hecke algebras. Invent. Math. 53, 165–184 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kirillov, A. N.: Notes on Schubert, Grothendieck and key polynomials. SIGMA 12, 034 (2016). doi:10.3842/SIGMA.2016.034

  22. Lam, T.: Ribbon Schur operators. Eur. J. Comb. 29, 343–359 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lapointe, L., Morse, J.: Tableaux Statistics for Two Part Macdonald Polynomials, Algebraic Combinatorics and Quantum Groups. World Scientific, River Edge (2003)

    MATH  Google Scholar 

  24. Lascoux, A., Leclerc, B., Thibon, J.-Y.: Ribbon tableaux, Hall–Littlewood functions, quantum affine algebras, and unipotent varieties. J. Math. Phys. 38, 1041–1068 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lascoux, A., Schützenberger, M.-P.: Le monoïde plaxique, noncommutative structures in algebra and geometric combinatorics (Naples 1978). Quad. “Ricerca Sci.” 109, 129–156 (1981)

    Google Scholar 

  26. Lascoux, A., Schützenberger, M.-P.: Structure de Hopf de l’anneau de cohomologie et de l’anneau de Grothendieck d’une variété de drapeaux. Acad. C. R. Sci. Paris Sér I Math. 295, 629–633 (1982)

    MATH  Google Scholar 

  27. Leclerc, B., Thibon, J.-Y.: Littlewood–Richardson coefficients and Kazhdan–Lusztig polynomials, combinatorial methods in representation theory (Kyoto, 1998). Adv. Stud. Pure Math. 28, 155–220 (2000)

    MATH  Google Scholar 

  28. Novelli, J.-C., Schilling, A.: The forgotten monoid, combinatorial representation theory and related topics. Res. Inst. Math. Sci. B8, 71–83 (2008)

    MATH  Google Scholar 

  29. Roberts, A.: Dual equivalence graphs revisited and the explicit Schur expansion of a family of LLT polynomials. J. Algebr. Comb. 39, 389–428 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rosales, J.C., García-Sánchez, P.A.: Finitely Generated Commutative Monoids. Nova Science Publishers Inc, Commack (1999)

    MATH  Google Scholar 

  31. Schützenberger, M.-P.: La correspondance de Robinson. In: Combinatoire et représentation du groupe symétrique, Lecture Notes in Mathematics, vol. 579, pp. 59–113. Springer, Berlin (1977)

  32. Stanley, R.P.: Enumerative Combinatorics, vol. 2. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  33. Stembridge, J.R.: Admissible \(W\)-graphs represent. Theory 12, 346–368 (2008)

    MathSciNet  MATH  Google Scholar 

  34. van Leeuwen, M.A.A.: Some objective correspondences involving domino tableaux. Electron. J. Comb. 7, 35 (2000)

    MATH  Google Scholar 

  35. Wachs, M.L.: Flagged Schur functions, Schubert polynomials, and symmetrizing operators. J. Comb. Theory Ser. A 40, 276–289 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zabrocki, M.: Positivity for special cases of \((q, t)\)-Kostka coefficients and standard tableaux statistics. Electron. J. Comb. 6, 41 (1999)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank Sami Assaf, Anna Blasiak, Thomas Lam, and Bernard Leclerc for helpful discussions, and Elaine So and Xun Zhu for help typing and typesetting figures. This project began while the first author was a postdoc at the University of Michigan. He is grateful to John Stembridge for his generous advice and many detailed discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonah Blasiak.

Additional information

The authors were supported by NSF Grants DMS-14071174 (J.B.) and DMS-1361789 (S.F.).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blasiak, J., Fomin, S. Noncommutative Schur functions, switchboards, and Schur positivity. Sel. Math. New Ser. 23, 727–766 (2017). https://doi.org/10.1007/s00029-016-0253-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-016-0253-y

Keywords

Mathematics Subject Classification

Navigation