Skip to main content
Log in

The polytope of Tesler matrices

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We introduce the Tesler polytope \(\mathsf {Tes}_n(\mathbf{a})\), whose integer points are the Tesler matrices of size n with hook sums \(a_1,a_2,\ldots ,a_n \in \mathbb {Z}_{\ge 0}\). We show that \(\mathsf {Tes}_n(\mathbf{a})\) is a flow polytope and therefore the number of Tesler matrices is counted by the type \(A_n\) Kostant partition function evaluated at \((a_1,a_2,\ldots ,a_n,-\sum _{i=1}^n a_i)\). We describe the faces of this polytope in terms of “Tesler tableaux” and characterize when the polytope is simple. We prove that the h-vector of \(\mathsf {Tes}_n(\mathbf{a})\) when all \(a_i>0\) is given by the Mahonian numbers and calculate the volume of \(\mathsf {Tes}_n(1,1,\ldots ,1)\) to be a product of consecutive Catalan numbers multiplied by the number of standard Young tableaux of staircase shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. In the literature, transportation polytopes are more general [21]. The matrices can be rectangular and the \(i{\mathrm{th}}\) row sum and the \(i{\mathrm{th}}\) column sum can differ.

References

  1. Armstrong, D.: Tesler matrices. Talk slides Bruce Saganfest. http://www.math.miami.edu/~armstrong/Talks/Tesler_Saganfest.pdf (2014)

  2. Armstrong, D., Garsia, A., Haglund, J., Rhoades, B., Sagan, B.: Combinatorics of Tesler matrices in the theory of parking functions and diagonal harmonics. J. Comb. 3, 451–494 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Baldoni-Silva, W., Beck, M., Cochet, C., Vergne, M.: Volume computation for polytopes and partition functions for classical root systems. Discrete Comput. Geom. 35, 551–595 (2006). Maple worksheets: http://www.math.jussieu.fr/~vergne/work/IntegralPoints.html

  4. Baldoni, W., Vergne, M.: Kostant partitions functions and flow polytopes. Transform. Groups 13, 447–469 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baldoni, W., Vergne, M.: Morris identities and the total residue for a system of type \(A_r\). Prog. Math. 220, 1–19 (2004)

    MathSciNet  MATH  Google Scholar 

  6. Brion, M., Vergne, M.: Residue formulae, vector partition functions and lattice points in rational polytopes. J. Am. Math. Soc. 10, 797–833 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Butler, F., Can, M., Haglund, J., Remmel, J.: Rook Theory Notes. http://www.math.ucsd.edu/~remmel/files/Book.pdf

  8. Carlsson, E., Mellit, A.: A proof the shuffle conjecture. arXiv:1508.06239

  9. Chan, C.S., Robbins, D.P.: On the volume of the polytope of doubly stochastic matrices. Exp. Math. 8, 291–300 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chan, C.S., Robbins, D.P., Yuen, D.S.: On the volume of a certain polytope. Exp. Math. 9, 91–99 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Garsia, A.M., Haglund, J.: A positivity result in the theory of Macdonald polynomials. Proc. Natl. Acad. Sci. USA 98, 4313–4316 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Garsia, A.M., Haglund, J.: A proof of the \(q, t\)-Catalan positivity conjecture. Discrete Math. 256, 677–717 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Garsia, A.M., Haglund, J., Xin, G.: Constant term methods in the theory of Tesler matrices and Macdonald polynomial operators. Ann. Comb. 18, 83–109 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gorsky, E., Negut, A.: Refined knot invariants and Hilbert schemes. J. Math. Pures Appl. 104, 403–435 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Haglund, J.: A polynomial expression for the Hilbert series of the quotient ring of diagonal coinvariants. Adv. Math. 227, 2092–2106 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Haglund, J.: The \(q,t\)-Catalan Numbers and the Space of Diagonal Harmonics. University Lecture Series, vol. 41. American Mathematical Society (2008)

  17. Haglund, J., Haiman, M., Loehr, N., Remmel, J., Ulyanov, A.: A combinatorial formula for the character of the diagonal coinvariants. Duke Math. J. 126, 195–232 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Haglund, J., Loehr, N.: A conjectured combinatorial formula for the Hilbert series for diagonal harmonics. Discrete Math. 298(1), 189–204 (2005)

  19. Haglund J., Remmel J., Wilson A.T.: The delta conjecture. arXiv:1509.07058

  20. Hille, L.: Quivers, cones and polytopes. Linear Algebra Appl. 365, 215–237 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Klee, V., Witzgall, C.: Facets and Vertices of Transportation Polytopes, Mathematics of the Decision Sciences Part 1. Lectures in Applied Mathematics, vol. 11, pp. 257–282. AMS, Providence, RI (1968)

    Google Scholar 

  22. Levande, P.: Special cases of the parking functions conjecture and upper-triangular matrices. In: DMTCS proceedings, 23rd international conference on formal power series and algebraic combinatorics (FPSAC 2011), pp.635–644 (2011)

  23. Morris, W.G.: Constant term identities for finite and affine root systems: conjectures and theorems. Ph.D. thesis, University of Wisconsin-Madison (1982)

  24. Pitman, J., Stanley, R.P.: A polytope related to empirical distributions, plane trees, parking functions, and the associahedron. Discrete Comput. Geom. 27, 603–634 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sloane, Neil J.A.: The on-line encyclopedia of integer sequences. http://oeis.org/

  26. Wilson, A.T.: A weighted sum over generalized Tesler matrices. arXiv:1510.02684

  27. Xin, G.: The ring of Malcev–Neumann series and the residue theorem. Ph.D. thesis, Brandeis University (2004)

  28. Zeilberger, D.: Proof of conjecture of Chan, Robbins, and Yuen. Electron. Trans. Numer. Anal. 9, 147–148 (1999)

    MathSciNet  MATH  Google Scholar 

  29. Ziegler, G.: Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152. Springer, New York (1995)

    MATH  Google Scholar 

Download references

Acknowledgments

We thank Drew Armstrong for many inspiring conversations throughout this project. We thank François Bergeron for suggesting that flow polytopes were related to Tesler matrices and Ole Warnaar for showing us simplifications of Gamma functions that led to the compact expression on the right-hand-side of (3.7) from a more complicated precursor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karola Mészáros.

Additional information

Mészáros was partially supported by NSF Postdoctoral Research Fellowship DMS-1103933 and NSF Grant DMS-1501059. Morales was supported by a postdoctoral fellowship from CRM-ISM and LaCIM. Rhoades was partially supported by NSF Grant DMS-1068861.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mészáros, K., Morales, A.H. & Rhoades, B. The polytope of Tesler matrices. Sel. Math. New Ser. 23, 425–454 (2017). https://doi.org/10.1007/s00029-016-0241-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-016-0241-2

Mathematics Subject Classification

Navigation