Skip to main content
Log in

Relative commutants of strongly self-absorbing \(\mathrm {C}^*\)-algebras

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

The relative commutant \(A^{\prime }\cap A^{\mathcal U}\) of a strongly self-absorbing algebra A is indistinguishable from its ultrapower \(A^{\mathcal U}\). This applies both to the case when A is the hyperfinite II\(_1\) factor and to the case when it is a strongly self-absorbing \(\mathrm {C}^*\)-algebra. In the latter case, we prove analogous results for \(\ell _\infty (A)/c_0(A)\) and reduced powers corresponding to other filters on \({\mathbb N}\). Examples of algebras with approximately inner flip and approximately inner half-flip are provided, showing the optimality of our results. We also prove that strongly self-absorbing algebras are smoothly classifiable, unlike the algebras with approximately inner half-flip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. All ultrafilters are assumed to be nonprincipal ultrafilters on \({\mathbb N}\) and \(A^{\mathcal U}\) denotes the ultrapower of A associated with \(\mathcal U\).

  2. \(\otimes _{\mathrm {min}}\) denotes the minimal, or spatial, tensor product of \(\mathrm {C}^*\)-algebras. In most of this paper, we work with tensor products where one factor is nuclear, and then simply write \(\otimes \) (since all \(\mathrm {C}^*\)-tensor norms are the same).

References

  1. Ben Yaacov, I., Berenstein, A., Henson, C.W., Usvyatsov, A.: Model theory for metric structures. In: Chatzidakis, Z., et al. (eds.) Model Theory with Applications to Algebra and Analysis, Vol. II, number 350 in London Math. Soc. Lecture Notes Series, pp. 315–427. Cambridge University Press, (2008)

  2. Blackadar, B.: Shape theory for \({\rm {C}} ^*\)-algebras. Math. Scand. 56(2), 249–275 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blackadar, B.: K-theory for Operator Algebras, vol. 5. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  4. Brown, N.P.: Topological dynamical systems associated to II\(_1\) factors. Adv. Math. 227(4), 1665–1699 (2011). (With an appendix by Narutaka Ozawa)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carlson, K., Cheung, E., Farah, I., Gerhardt-Bourke, A., Hart, B., Mezuman, L., Sequeira, N., Sherman, A.: Omitting types and AF algebras. Arch. Math. Log. 53, 157–169 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Connes, A.: Classification of injective factors. Cases \({\rm II}_1\), \({\rm II}_\infty \), \({\rm III}_\lambda \), \(\lambda \ne 1\). Ann. Math. 2(104), 73–115 (1976)

    Article  Google Scholar 

  7. Cuntz, J.: The internal structure of simple \({\rm {C}} ^*\)-algebras. In: Operator Algebras and Applications, Part I (Kingston, Ont., 1980), vol. 38 of Proceedings of the Symposium Pure Mathematics, pp. 85–115. American Mathematical Society, Providence, (1982)

  8. Eagle, C., Vignati, A.: Saturation and elementary equivalence of \({\rm {C}}^*\)-algebras. J. Funct. Anal. 269(8), 2631–2664 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Effros, E.G., Rosenberg, J.: \({\rm {C}}^*\)-algebras with approximately inner flip. Pac. J. Math. 77(2), 417–443 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  10. Farah, I.: Logic and operator algebras. In: Jang, S.Y. et al. (eds.) Proceedings of the Seoul ICM, vol II. pp. 15–39 (2014)

  11. Farah, I., Hart, B.: Countable saturation of corona algebras. C. R. Math. Rep. Acad. Sci. Can. 35, 35–56 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Farah, I., Hart, B., Lupini, M., Robert, L., Tikuisis, A., Vignati, A., Winter, W.: Model theory of nuclear \({\rm {C}} ^*\)-algebras. arXiv:1602.08072 (2016)

  13. Farah, I., Hart, B., Sherman, D.: Model theory of operator algebras I: stability. Bull. Lond. Math. Soc. 45, 825–838 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Farah, I., Hart, B., Sherman, D.: Model theory of operator algebras II: model theory. Isr. J. Math. 201, 477–505 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Farah, I., Hart, B., Sherman, D.: Model theory of operator algebras III: elementary equivalence and II\(_1\) factors. Bull. Lond. Math. Soc. 46, 1–20 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Farah, I., Shelah, S.: Rigidity of continuous quotients. J. Math. Inst. Jussieu 15, 1–28 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Farah, I., Toms, A.S., Törnquist, A.: The descriptive set theory of \({\rm {C}}^*\)-algebra invariants. Int. Math. Res. Not. 22, 5196–5226 (2013). (Appendix with C. Eckhardt)

    MathSciNet  MATH  Google Scholar 

  18. Farah, I., Toms, A.S., Törnquist, A.: Turbulence, orbit equivalence, and the classification of nuclear \({\rm {C}}^*\)-algebras. J. Reine Angew. Math. 688, 101–146 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Gardella, E., Lupini, M.: Conjugacy and cocycle conjugacy of automorphisms of \({\cal O} _2\) are not Borel. Accepted for publication in Münster J. Math.; arXiv:1404.3617 (2014)

  20. Ghasemi, S.: Reduced products of metric structures: a metric Feferman-Vaught theorem. arXiv:1411.0794 (2014)

  21. Ghasemi, S.: \({\rm {SAW}}^*\) algebras are essentially non-factorizable. Glasg. Math. J. 57(1), 1–5 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jung, K.: Amenability, tubularity, and embeddings into \({\rm {R}}^\omega \). Math. Ann. 338(1), 241–248 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kirchberg, E.: Central sequences in \({\rm {C}} ^*\)-algebras and strongly purely infinite algebras. In: Operator Algebras: The Abel Symposium 2004, vol. 1 of Abel Symposium, pp. 175–231. Springer, Berlin, (2006)

  24. Kirchberg, E., Phillips, N.C.: Embedding of exact \({\rm C}^*\)-algebras in the Cuntz algebra \({\cal O}_2\). J. Reine Angew. Math. 525, 17–53 (2000)

    MATH  Google Scholar 

  25. Kirchberg, E., Rørdam, M.: Central sequence \({\rm {C}} ^*\)-algebras and tensorial absorption of the Jiang-Su algebra. J. Reine Angew. Math. 695, 175–214 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Kirchberg, E., Rørdam, M.: When central sequence \({\rm {C}} ^*\)-algebras have characters. Int. J. Math. 26(7), 1550049 (2015). (32 pgs.)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lin, H.: Approximate unitary equivalence in simple \({\rm {C}} ^*\)-algebras of tracial rank one. Trans. Am. Math. Soc. 364(4), 2021–2086 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Matui, H., Sato, Y.: Strict comparison and \({\cal {Z}}\)-absorption of nuclear \({\rm {C}}^*\)-algebras. Acta Math. 209(1), 179–196 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. McDuff, D.: Central sequences and the hyperfinite factor. Proc. Lond. Math. Soc. 21, 443–461 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pedersen, G.K.: The corona construction. In: Operator Theory: Proceedings of the 1988 GPOTS-Wabash Conference (Indianapolis, IN, 1988), vol. 225 of Pitman Research Notes Mathematics Series, pp. 49–92. Longman Sci. Tech., Harlow (1990)

  31. Phillips, N.C.: A classification theorem for nuclear purely infinite simple \({\rm {C}} ^*\)-algebras. Doc. Math. 5, 49–114 (2000)

    MathSciNet  MATH  Google Scholar 

  32. Rørdam, M.: Classification of inductive limits of Cuntz algebras. J. Reine Angew. Math. 440, 175–200 (1993)

    MathSciNet  MATH  Google Scholar 

  33. Rørdam, M.: Classification of Nuclear \({\rm {C}} ^*\)-Algebras, Encyclopaedia of Math Sciences, vol. 126. Springer, Berlin (2002)

    MATH  Google Scholar 

  34. Tikuisis, A.: \(K\)-theoretic characterization of \({\rm {C}} ^*\)-algebras with approximately inner flip. Int. Math. Res. Not. IMRN, 2015. Art. ID rnv 334, 25 pages

  35. Toms, A.S., Winter, W.: Strongly self-absorbing \({\rm {C}} ^*\)-algebras. Trans. Am. Math. Soc. 359(8), 3999–4029 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradd Hart.

Additional information

AT was supported by an NSERC PDF. MR was supported by the Danish National Research Foundation (DNRF) through the Centre for Symmetry and Deformation at University of Copenhagen, and The Danish Council for Independent Research, Natural Sciences. IF and BH were partially supported by NSERC.

We are indebted to Leonel Robert for proving (2) of Theorem 1 and giving a large number of very useful remarks.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farah, I., Hart, B., Rørdam, M. et al. Relative commutants of strongly self-absorbing \(\mathrm {C}^*\)-algebras. Sel. Math. New Ser. 23, 363–387 (2017). https://doi.org/10.1007/s00029-016-0237-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-016-0237-y

Keywords

Mathematics Subject Classification

Navigation