Skip to main content
Log in

Tempered representations of p-adic groups: special idempotents and topology

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

Let \(G=G(k)\) be a connected reductive group over a p-adic field k. The smooth (and tempered) complex representations of G can be considered as the nondegenerate modules over the Hecke algebra \({\mathcal {H}}={\mathcal {H}}(G)\) and the Schwartz algebra \({\mathcal {S}}={\mathcal {S}}(G)\) forming abelian categories \({\mathcal {M}}(G)\) and \({\mathcal {M}}^t(G)\), respectively. Idempotents \(e\in {\mathcal {H}}\) or \({\mathcal {S}}\) define full subcategories \({\mathcal {M}}_e(G)= \{V : {\mathcal {H}}eV=V\}\) and \({\mathcal {M}}_e^t(G)= \{V : {\mathcal {S}}eV=V\}\). Such an e is said to be special (in \({\mathcal {H}}\) or \({\mathcal {S}}\)) if the corresponding subcategory is abelian. Parallel to Bernstein’s result for \(e\in {\mathcal {H}}\) we will prove that, for special \(e \in {\mathcal {S}}\), \({\mathcal {M}}_e^t(G) = \prod _{\Theta \in \theta _e} {\mathcal {M}}^t(\Theta )\) is a finite direct product of component categories \({\mathcal {M}}^t(\Theta )\), now referring to connected components of the center of \({\mathcal {S}}\). A special \(e\in {\mathcal {H}}\) will be also special in \({\mathcal {S}}\), but idempotents \(e\in {\mathcal {H}}\) not being special can become special in \({\mathcal {S}}\). To obtain conditions we consider the sets \(\mathrm{Irr}^t(G) \subset \mathrm{Irr}(G)\) of (tempered) smooth irreducible representations of G, and we view \(\mathrm{Irr}(G)\) as a topological space for the Jacobson topology defined by the algebra \({\mathcal {H}}\). We use this topology to introduce a preorder on the connected components of \(\mathrm{Irr}^t(G)\). Then we prove that, for an idempotent \(e \in {\mathcal {H}}\) which becomes special in \({\mathcal {S}}\), its support \(\theta _e\) must be saturated with respect to that preorder. We further analyze the above decomposition of \({\mathcal {M}}_e^t(G)\) in the case where G is k-split with connected center and where \(e = e_J \in {\mathcal {H}}\) is the Iwahori idempotent. Here we can use work of Kazhdan and Lusztig to relate our preorder on the support \(\theta _{e_J}\) to the reverse of the natural partial order on the unipotent classes in G. We finish by explicitly computing the case \(G=GL_n\), where \(\theta _{e_J}\) identifies with the set of partitions of n. Surprisingly our preorder (which is a partial order now) is strictly coarser than the reverse of the dominance order on partitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubert, A.-M., Baum, P., Plymen, R., Solleveld, M.: The principal series of \(p\)-adic groups with disconnected centre. Preprint (2014)

  2. Barbasch, D., Moy, A.: A unitarity criterion for \(p\)-adic groups. Invent. Math. 98, 19–37 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Borel, A.: Linear Algebraic Groups, 2nd edn. Springer, New York (1991)

    Book  MATH  Google Scholar 

  4. Borel, A.: Automorphic \(L\)-functions. In: Borel, A., Casselmann, W. (eds.) Automorphic Forms, Representations, and \(L\)-Functions. Proc. Symp. Pure Math. 33(2), 27–61. American Math. Soc. (1979)

  5. Borel, A., Tits, J.: Groupes réductifs. Publ. Math. IHES 27, 55–151 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  6. Borel, A., Wallach, N.: Continuous cohomology, discrete subgroups, and representations of reductive groups. Annals Math. Studies, vol. 94. Princeton University Press (1980)

  7. Bourbaki, N.: Groupes et algèbres de Lie. Masson 1981 (1990)

  8. Brylawski, T.: The lattice of integer partitions. Discrete Math. 6, 201–219 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bushnell, C.J., Kutzko, P.C.: Smooth representations of reductive \(p\)-adic groups: structure theory via types. Proc. Lond. Math. Soc. 77, 582–634 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Carter, R.: Finite Groups of Lie Type. Wiley, New York (1993)

    Google Scholar 

  11. Cartier, P.: Representations of \({\mathfrak{p}}\)-adic groups: a survey. In: Borel, A., Casselman, W. (eds.) Automorphic Forms, Representations, and \(L\)-Functions. Proc. Symp. Pure Math. 33(1), 111–155. American Math. Soc. (1979)

  12. Casselman, W.: Introduction to the theory of admissible representations of \(\wp \)-adic reductive groups. Preprint (1995)

  13. Dat, J.-F.: Caractères à valeurs dans le centre de Bernstein. J. Reine Angew. Math. 508, 61–83 (1999)

    Article  MathSciNet  Google Scholar 

  14. Haines, T., Kottwitz, R., Prasad, A.: Iwahori–Hecke algebras. J. Ramanujan Math. Soc. 25(2), 113–145 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Kazhdan, D., Lusztig, G.: Proof of the Deligne–Langlands conjecture for Hecke algebras. Invent. Math. 87, 153–215 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rodier, F.: Représentations de \({\rm GL(n,k)}\)\(k\) est un corps \({\mathfrak{p}}\)-adique. Sém. Bourbaki, Exp. 587 (1981/82)

  17. Schneider, P., Zink, E.-W.: The algebraic theory of tempered representations of \(p\)-adic groups, part I: parabolic induction and restriction. J. Inst. Math. Jussieu 6, 639–688 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Schneider, P., Zink, E.-W.: The algebraic theory of tempered representations of \(p\)-adic groups, part II: projective generators. Geom. Funct. Anal. 17, 2018–2065 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Schneider, P., Stuhler, U., Zink, E.-W.: \(K\)-types for the tempered components of a \(p\)-adic general linear group. With an appendix: the definition of the tempered category. J. Reine Angew. Math. 517, 161–208 (1999)

    MathSciNet  MATH  Google Scholar 

  20. Silberger, A.: The Langlands quotient theorem for \(p\)-adic groups. Math. Ann. 236, 95–104 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  21. Springer, T.A.: Linear Algebraic Groups, 2nd edn. Birkhäuser, Boston-Basel-Berlin (1998)

    Book  MATH  Google Scholar 

  22. Springer, T.A., Steinberg, R.: Conjugacy classes. In: Seminar on Algebraic Groups and Related Finite Groups, Lect. Notes Math., vol. 131. Springer, pp. 167–266 (1986)

  23. Vigneras, M.-F.: On formal dimensions for reductive \(p\)-adic groups. In: Gelbart, S., Howe, R., Sarnak, P. (eds.) Festschrift in honor of I.I. Piatetski-Shapiro, part I. Israel Math. Conf. Proc. vol. 2, pp. 225–266 (1990)

  24. Waldspurger, J.-L.: La formule de Plancherel pour les groupes \(p\)-adiques, d’après Harish–Chandra. J. Inst. Math. Jussieu 2, 235–333 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zelevinsky, A.: Induced representations of reductive \({\mathfrak{p}}\)-adic groups II. On irreducible representations of \({\rm GL}(n)\). Ann. Sci. ENS 13, 165–210 (1980)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Schneider.

Additional information

For the 70th birthday of Joseph Bernstein

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schneider, P., Zink, EW. Tempered representations of p-adic groups: special idempotents and topology. Sel. Math. New Ser. 22, 2209–2242 (2016). https://doi.org/10.1007/s00029-016-0274-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-016-0274-6

2010 Mathematics Subject Classification

Navigation