Skip to main content
Log in

Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras IV

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

Let \(U'_q(\mathfrak {g})\) be a twisted affine quantum group of type \(A_{N}^{(2)}\) or \(D_{N}^{(2)}\) and let \(\mathfrak {g}_{0}\) be the finite-dimensional simple Lie algebra of type \(A_{N}\) or \(D_{N}\). For a Dynkin quiver of type \(\mathfrak {g}_{0}\), we define a full subcategory \({\mathcal C}_{Q}^{(2)}\) of the category of finite-dimensional integrable \(U'_q(\mathfrak {g})\)-modules, a twisted version of the category \({\mathcal C}^{(1)}_{Q}\) introduced by Hernandez and Leclerc. Applying the general scheme of affine Schur–Weyl duality, we construct an exact faithful KLR-type duality functor \({\mathcal F}_{Q}^{(2)}:\mathrm{Rep}(R) \rightarrow {\mathcal C}_{Q}^{(2)}\), where \(\mathrm{Rep}(R)\) is the category of finite-dimensional modules over the quiver Hecke algebra R of type \(\mathfrak {g}_{0}\) with nilpotent actions of the generators \(x_k\). We show that \({\mathcal F}_{Q}^{(2)}\) sends any simple object to a simple object and induces a ring isomorphism .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akasaka, T., Kashiwara, M.: Finite-dimensional representations of quantum affine algebras. Publ. RIMS. Kyoto Univ. 33, 839–867 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bedard, R.: On commutation classes of reduced words in Weyl groups. Eur. J. Comb. 20, 483–505 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chari, V., Pressley, A.: A Guide to Quantum Groups. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  4. Chari, V., Pressley, A.: Yangians, integrable quantum systems and Dorey’s rule. Commun. Math. Phys. 181(2), 265–302 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chari, V., Pressley, A.: Quantum affine algebras and affine Hecke algebras. Pac. J. Math. 174(2), 295–326 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cherednik, I.V.: A new interpretation of Gelfand–Tzetlin bases. Duke Math. J. 54, 563–577 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ginzburg, V., Reshetikhin, N., Vasserot, E.: Quantum groups and flag varieties. A.M.S Contemp. Math. 175, 101–130 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hernandez, D.: Kirillov–Reshetikhin conjecture: the general case. Int. Math. Res. Not. 2010 no. 7, 149–193 (2010)

  9. Hernandez, D., Leclerc, B.: Cluster algebras and quantum affine algebras. Duke Math. J. 154, 265–341 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hernandez, D., Leclerc, B.: Quantum Grothendieck rings and derived Hall algebras. J. Reine Angew. Math. 701, 77–126 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Jimbo, M.: A \(q\)-analogue of \(U(\mathfrak{gl}_{N+1})\), Hecke algebra, and the Yang–Baxter equation. Lett. Math. Phys. 11, 247–252 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kac, V.: Infinite Dimensional Lie algebras, 3rd edn. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  13. Kang, S.-J., Kashiwara, M., Kim, M.: Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras, arXiv:1304.0323 [math.RT]

  14. Kang, S.-J., Kashiwara, M., Kim, M.: Symmetric quiver Hecke algebras and \(R\)-matrices of quantum affine algebras II. Duke Math. J. 164(8), 1549–1602 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kang, S.-J., Kashiwara, M., Kim, M., Oh, S.-J.: Simplicity of heads and socles of tensor products. Compos. Math. 151(2), 377–396 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kang, S.-J., Kashiwara, M., Kim, M., Oh, S.-J.: Symmetric quiver Hecke algebras and \(R\)-matrices of quantum affine algebras III. Proc. Lond. Math. Soc. 111(2), 420–444 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kang, S.-J., Kashiwara, M., Kim, M., Oh, S.-J.: Monoidal categorification of cluster algebras II, arXiv:1502.06714

  18. Kashiwara, M.: On level zero representations of quantum affine algebras. Duke. Math. J. 112, 117–175 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Khovanov, M., Lauda, A.: A diagrammatic approach to categorification of quantum groups I. Represent. Theory 13, 309–347 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kato, S.: Poincaré–Birkhoff–Witt bases and Khovanov–Lauda–Rouquier algebras. Duke Math. J. 163(3), 619–663 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kim, M.: Khovanov–Lauda–Rouquier algebras and R-matrices, Ph.D. thesis, Seoul National University (2012)

  22. McNamara, P.: Finite dimensional representations of Khovanov–Lauda–Rouquier algebras I: finite type. J. Reine Angew. Math. 707, 103–124 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Oh, S.-J.: The denominators of normalized \(R\)-matrices of types \(A_{2n-1}^{(2)}\), \(A_{2n}^{(2)}\), \(B_{n}^{(1)}\) and \(D_{n+1}^{(2)}\). Publ. Res. Inst. Math. Sci. 51, 709–744 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Oh, S.-J.: Auslander–Reiten quiver of type A and generalized quantum affine Schur–Weyl duality, arXiv:1405.3336, to appear in Trans. Am. Math. Soc

  25. Oh, S.-J.: Auslander–Reiten quiver of type D and generalized quantum affine Schur–Weyl duality. J. Algebra 460, 203–252 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Papi, P.: A characterization of a special ordering in a root system. Proc. Am. Math. Soc. 120(3), 661–665 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ringel, C.: PBW-bases of quantum groups. J. Reine Angew. Math. 470, 51–88 (1996)

    MathSciNet  MATH  Google Scholar 

  28. Rouquier, R.: 2-Kac-Moody algebras, arXiv:0812.5023 [math.RT]

  29. Schur, I.: Über Eine Klasse Von Matrizen, die Sich Einer Gegeben Matrix Zurodenen Lassen, Ph.D. thesis (1901). Reprinted in Gesamelte Abhandlungen 1, 1–70

  30. Schur, I.: Über die rationalen Darstellungen der allgemeinen linearen Gruppe, Sitzungsberichte der Königlich Preussischen Adademie der Wissenschaften zu Berlin, 58–75. Reprinted in Gessamelte Abhandlungen 3, 68–85 (1927)

  31. Zelikson, S.: Auslander–Reiten quivers and the Coxeter complex. Algebr. Represent. Theory 8(1), 35–55 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Se-Jin Oh.

Additional information

Dedicated to Professor Joseph Bernstein on the occasion of his seventieth Birthday.

This work was supported by NRF Grant # 2014-021261 and by NRF Grant # 2010-0010753.

This work was partially supported by Grant-in-Aid for Scientific Research (B) 22340005, Japan Society for the Promotion of Science.

This work was supported by NRF Grant # 2016R1C1B2013135.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, SJ., Kashiwara, M., Kim, M. et al. Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras IV. Sel. Math. New Ser. 22, 1987–2015 (2016). https://doi.org/10.1007/s00029-016-0267-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-016-0267-5

Keywords

Mathematics Subject Classification

Navigation