Skip to main content
Log in

Gibbs measures associated to the integrals of motion of the periodic derivative nonlinear Schrödinger equation

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We study the one-dimensional periodic derivative nonlinear Schrödinger equation. This is known to be a completely integrable system, in the sense that there is an infinite sequence of formal integrals of motion \({\textstyle \int }h_k\), \(k\in {\mathbb {Z}}_{+}\). In each \({\textstyle \int }h_{2k}\) the term with the highest regularity involves the Sobolev norm \(\dot{H}^{k}({\mathbb {T}})\) of the solution of the DNLS equation. We show that a functional measure on \(L^2({\mathbb {T}})\), absolutely continuous w.r.t. the Gaussian measure with covariance \(({\mathbb {I}}+(-\varDelta )^{k})^{-1}\), is associated to each integral of motion \({\textstyle \int }h_{2k}\), \(k\ge 1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barakat, A., De Sole, A., Kac, V.G.: Poisson vertex algebras in the theory of Hamiltonian equations. Jpn. J. Math. 4, 141–252 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bogachev, V.I.: Gaussian measures. In: Mathematical Surveys and Monographs, vol. 62. American Mathematical Society, Providence, RI (1998)

  3. Bourgain, J.: Periodic nonlinear Schrödinger equation and invariant measures. Commun. Math. Phys. 166(1), 1–26 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bourgain, J.: Invariant measures for the 2D-defocusing nonlinear Schrödinger equation. Commun. Math. Phys. 176, 421–445 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bourgain, J.: Invariant measures for the Gross–Piatevskii equation. J. Math. Pures Appl. 76, 649–702 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bourgain, J.: Invariant measures for NLS in infinite volume. Commun. Math. Phys. 210, 605–620 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brydges, D.C., Slade, G.: Statistical mechanics of the 2-dimensional focusing nonlinear Schrödinger equation. Commun. Math. Phys. 182, 485–504 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Burq, N., Thomann, L., Tzvetkov, N.: Remarks on the Gibbs Measures for Nonlinear Dispersive Equations. arXiv:1412.7499 [math.AP]

  9. Caianiello, E.R.: Combinatorics and Renormalization in Quantum Field Theory, vol. 111. W.A. Benjamin, Reading (1973)

    Google Scholar 

  10. Carpentier, S., De Sole, A., Kac, V.G.: Rational matrix pseudodifferential operators. Sel. Math. 20(2), 403–419 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Deng, Y.: Invariance of the Gibbs measure for the Benjamin-Ono equation. J. Eur. Math. Soc. (JEMS) 17(15), 1107–1198 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Deng, Y., Tzvetkov, N., Visciglia, N.: Invariant measures and long time behaviour for the Benjamin–Ono equation III. Commun. Math. Phys. 339(3), 815–857 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. De Sole, A., Kac, V.G.: Non-local Poisson structures and applications to the theory of integrable systems. Jpn. J. Math. 8(2), 233–347 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Grünrock, A., Herr, S.: Low regularity local well-posedness of the derivative nonlinear Schrödinger equation with periodic initial data. SIAM J. Math. Anal. 39, 1890–1920 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guerra, F., Rosen, L., Simon, B.: The \(P(\Phi )_2\) Euclidean quantum field theory as classical statistical mechanics. Ann. Math. 101, 111–189 (1975)

    Article  MathSciNet  Google Scholar 

  16. Hanson, D.L., Wright, F.T.: A bound on tail probabilities for quadratic forms in independent random variables. Ann. Math. Stat. 42, 1079–1083 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hayashi, N., Ozawa, T.: On the derivative nonlinear Schringer equation. Phys. D 55(1–2), 14–36 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hayashi, N., Ozawa, T.: Finite energy solutions of nonlinear Schringer equations of derivative type. SIAM J. Math. Anal. 25(6), 1488–1503 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Herr, S.: On the Cauchy problem for the derivative nonlinear Schrödinger equation with periodic boundary condition. Int. Math. Res. Not. 2006, 1–33 (2006)

    MathSciNet  MATH  Google Scholar 

  20. Kaup, D.J., Newell, A.C.: An exact solution for a derivative nonlinear Schrödinger equation. J. Math. Phys. 19(4), 798–801 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lebowitz, J., Rose, R., Speer, E.: Statistical mechanics of the nonlinear Schrödinger equation. J. Stat. Phys. 50, 657–687 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  22. Magri, F.: A simple model of the integrable Hamiltonian equation. J. Math. Phys. 19(5), 1156–1162 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mjølhus, E.: On the modulation instability of hydromagnetic waves parallel to the magnetic field. J. Plasma Phys. 19(17), 321–334 (1976)

    Article  Google Scholar 

  24. Miao, C., Wu, Y., Xu, G.: Global well-posedness for Schrödinger equation with derivative. J. Differ. Equ. 251, 2164–2195 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. McKean, H., Vaninski, K.: Statistical mechanics of nonlinear wave equations and Brownian motion with restoring drift. Commun. Math. Phys. 160, 615–630 (1994)

    Article  Google Scholar 

  26. McKean, H.P.: Statistical mechanics of nonlinear wave equations (4): cubic Schrödinger. Commun. Math. Phys. 168, 479–491 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mosincat, R., Oh, T.: A Remark on Global Well-Posedness of the Derivative Nonlinear Schrödinger Equation on the Circle. C.R. Math. Acad. Sci. Paris 353(9), 837–841 (2015)

  28. Nahmod, A.R., Oh, T., Rey-Bellet, L., Staffilani, G.: Invariant weighted Wiener measures and almost sure global well-posedness for the periodic derivative NLS. J. Eur. Math. Soc. (JEMS) 14(4), 1275–1330 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nahmod, A., Rey-Bellet, L., Sheffield, S., Staffilani, G.: Absolute continuity of Brownian bridges under certain gauge transformations. Math. Res. Lett. 18, 875 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nelson, E.: The free Markoff field. J. Funct. Anal. 12, 211–227 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rogister, A.: Parallel propagation of nonlinear low-frequency waves in high-\(\beta \) plasma. Phys. Fluids 14, 2733–2739 (1971)

    Article  Google Scholar 

  32. Rudelson, M., Vershynin, R.: Hanson–Wright inequality and sub-Gaussian concentration. Electron. Commun. Probab. 18, 1–9 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Skorohod, A.V.: Integration in Hilbert space. In: Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 79. Springer-Verlag Berlin, Heidelberg, New York (1974)

  34. Simon, B.: The \(P(\Phi )_2\) Euclidean (quantum) field theory. In: Princeton Series in Physics. Princeton University Press, Princeton, NJ (1974)

  35. Simon, B.: Trace ideals and their applications. In: Mathematical Surveys and Monograph, 2nd edn., vol. 120. American Mathematical Society, Providence, RI (2005)

  36. Sulem, C., Sulem, P.L.: The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse. Applied Mathematical Sciences, vol. 139. Springer-Verlag, New-York (1999)

  37. Takaoka, H.: Well-posedness for the one-dimensional nonlinear Schrödinger equation with the derivative nonlinearity. Adv. Differ. Equ. 4, 561–580 (1999)

    MathSciNet  MATH  Google Scholar 

  38. Thomann, L., Tzvetkov, N.: Gibbs measure for the periodic derivative nonlinear Schrödinger equation. Nonlinearity 23(11), 2771–2791 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Tzvetkov, N.: Construction of a Gibbs measure associated to the periodic Benjamin–Ono equation. Probab. Theory Rel. Fields 146(3–4), 481 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tzvetkov, N., Visciglia, N.: Gaussian measures associated to the higher order conservation laws of the Benjamin–Ono equation. Ann. Sci. Norm. Super. 46, 249 (2013)

    MathSciNet  MATH  Google Scholar 

  41. Tzvetkov, N., Visciglia, N.: Invariant measures and long time behaviour for the Benjamin–Ono equation. Int. Math. Res. Not. 17, 4679 (2014)

    MathSciNet  MATH  Google Scholar 

  42. Tzvetkov, N., Visciglia, N.: Invariant measures and long time behaviour for the Benjamin–Ono equation II. J. Math. Pures Appl. 103, 102 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Weinstein, M.I.: Nonlinear Schrödinger equations and sharp interpolation estimates. Commun. Math. Phys. 87(4), 567–576 (1982/1983)

  44. Win, Y.Y.S.: Global well-posedness of the derivative nonlinear Schrödinger equations on T. Funkc. Ekvacioj 53, 51–88 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wu, Y.: Global well-posedness for the nonlinear Schrödinger equation with derivative in energy space. Anal. PDE 6(8), 1989–2002 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wu, Y.: Global Well-Posedness for the Nonlinear Schrödinger Equation Revisited. arXiv:1404.5159

  47. Zhidkov, P.: KdV and Nonlinear Schrödinger Equations: Qualitative Theory. Lecture Notes in Mathematics, vol. 1756. Springer, Berlin (2001)

Download references

Acknowledgments

This work begun during the visit of G.G. and R.L. to SISSA in Trieste. Then this research was supported through the program “Research in Pairs” by the Mathematisches Forschungsinstitut Oberwolfach in 2014. We thank these institutions for the kind hospitality. G.G. is supported by the Swiss National Science Foundation. R.L. is supported by the ERC Grant 277778 and MINECO Grant SEV-2011-0087 (Spain) and partially supported by the Italian Project FIRB 2012 “Dispersive dynamics: Fourier Analysis and Variational Methods.” D.V. is partially supported by an NSFC “Research Fund for International Young Scientists” Grant. We are grateful to B. Schlein for constant encouragement and many valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Lucà.

Appendix: Gaussian measures in Sobolev spaces: a toolbox

Appendix: Gaussian measures in Sobolev spaces: a toolbox

We are here interested in giving a succinct but self-contained survey on the theory of Gaussian measures in Hilbert Sobolev spaces. For a complete treatment we refer to [2, 33].

1.1 Concentration of measure in \(\dot{H}^{k}({\mathbb {T}})\)

Here we study the concentration property of the Gaussian measure with covariance \(({\mathbb {I}}+(-\varDelta )^{k})^{-1}\). The main feature is that the measure is concentrated on functions in \(L^2({\mathbb {T}})\) having slightly less then \(k-\frac{1}{2}\) weak derivatives as regularity. This is stated precisely in the following.

Proposition 6.1

For every \(k\ge 0\) we have \(\gamma _k(\bigcap \nolimits _{\varepsilon >0} \dot{H}^{k-\frac{1}{2}-\varepsilon })=1\).

We will proceed by steps. At first we prove

Lemma 6.2

\(\gamma _k(\dot{H}^{k-\frac{1}{2}+\varepsilon })=0\) for every \(\varepsilon \ge 0\).

Proof

We take any function \(\varphi \in \dot{H}^{s}({\mathbb {T}})\) with \(s\ge k-\frac{1}{2}\). We have that \(\Vert \varphi _N\Vert _{\dot{H}^s}\) is finite uniformly in N, where we recall \(\varphi _N\) is the projection on the Fourier modes \(|n|\le N\) defined by (1.5) and (1.6). We show that for all \(\lambda >0\)

$$\begin{aligned} \gamma _k\left( \Vert \varphi _N\Vert _{\dot{H}^s}\le \lambda \right) \rightarrow 0,\quad {\text{ as }}\quad N\rightarrow \infty . \end{aligned}$$

To do so, we make use of the Markov inequality: For every \(\mu >0\)

$$\begin{aligned} \gamma _k\left( \Vert \varphi _N\Vert _{\dot{H}^s}\le \lambda \right)\le & {} e^{\frac{\mu \lambda }{2}} \int \prod _{|n|\le N}\left( \frac{1+n^{2k}}{\sqrt{2\pi }}\hbox {d}\varphi _n \hbox {d}\bar{\varphi }_n\right) e^{-\frac{1}{2}\sum _n\left( 1+n^{2k}\right) |\varphi _n|^2}e^{-\frac{\mu }{2}\sum _n n^{2s}|\varphi _n|^2}\\\le & {} e^{\frac{\mu \lambda }{2}} \int \frac{1}{(2\pi )^{2N+1}}\hbox {d}\varphi ^{\prime }_n \hbox {d}\bar{\varphi }^{\prime }_n e^{-\frac{1}{2}\sum _n|\varphi ^{\prime }_n|^2}e^{-\mu \sum _n n^{2(s-k)}|\varphi ^{\prime }_n|^2}\\= & {} \exp \left[ \frac{\mu \lambda }{2}-\frac{1}{2}\sum _{\begin{array}{c} |n|\le N, \\ n\ne 0 \end{array}}\ln \left( 1+\frac{\mu }{|n|^{\kappa }}\right) \right] , \end{aligned}$$

where we have performed the change of variables \(\varphi ^{\prime }_n=\sqrt{1+n^{2k}}\varphi _n\) and set \(-2(k-s)=:\kappa \). Let us first consider negative \(\kappa \). In this case

$$\begin{aligned} \sum _{\begin{array}{c} |n|\le N, \\ n\ne 0 \end{array}}\ln \left( 1+\frac{\mu }{|n|^{\kappa }}\right) \ge 2N\ln (1+\mu ), \end{aligned}$$

and so we have an exponential decay in N for every choice of positive \(\mu \):

$$\begin{aligned} \gamma _p\left( \Vert \varphi _N\Vert _{\dot{H}^{s}}\le \lambda \right) \lesssim e^{\frac{\mu \lambda }{2}} e^{-2N \ln (1+\mu )},\quad (s>k). \end{aligned}$$
(6.1)

For \(\kappa \in [0,1)\) the series \(\sum \nolimits _n\ln \left( 1+\frac{\mu }{n^{\kappa }}\right) \) diverges as \(N^{1-\kappa }\). Hence,

$$\begin{aligned} \gamma _k\left( \Vert \varphi _N\Vert _{\dot{H}^{s}}\le \lambda \right) \lesssim e^{-\mu N^{1-2(k-s)}},\quad \left( k\ge s>k-\frac{1}{2}\right) . \end{aligned}$$
(6.2)

Finally, for \(\kappa =1\) we have a logarithmic divergence at exponent and therefore

$$\begin{aligned} \gamma _k\left( \Vert \varphi _N\Vert _{\dot{H}^{s}}\le \lambda \right) \le \left( \frac{e^{\frac{\lambda }{2}}}{N}\right) ^{\mu },\quad \left( s=k-\frac{1}{2}\right) , \end{aligned}$$
(6.3)

for arbitrary \(\mu >0\). We obtain the statement by taking \(N\rightarrow \infty \) in (6.1)–(6.3). \(\square \)

Remark 6.3

The same strategy can be also used to show the stronger statement

$$\begin{aligned} \gamma _k\left( \Vert \varphi _N\Vert _{\dot{H}^s}\le \ln N \right) \rightarrow 0{ \text{ as } }N\rightarrow \infty ,\qquad \left( s\ge k-\frac{1}{2}\right) . \end{aligned}$$

Lemma 6.4

We have that for every \(s<k-\frac{1}{2}\) and \(\lambda >0\)

$$\begin{aligned} \gamma _k\left( \Vert \varphi \Vert _{\dot{H}^s}\ge \lambda \right) \lesssim e^{-\lambda {/}4}. \end{aligned}$$
(6.4)

Proof

Let us take a function \(\varphi \in \dot{H}^{s}\) for some \(s<k-\frac{1}{2}\). We look at its truncation \(\varphi _N\) and again it is \(\Vert \varphi _N\Vert _{\dot{H}^s}\) finite uniformly in N. We exploit the reverse Chernoff bound at finite N: For every \(\mu \in (0,1)\) and \(\lambda >0\), we get

$$\begin{aligned} \gamma _k\left( \Vert \varphi _N\Vert _{\dot{H}^s}\ge \lambda \right)\le & {} e^{-\frac{\mu \lambda }{2}} \int \prod _{|n|\le N}\left( \frac{1+n^{2k}}{\sqrt{2\pi }}\hbox {d}\varphi _n \hbox {d}\bar{\varphi }_n\right) e^{-\frac{1}{2}\sum \nolimits _n(1+n^{2k})|\varphi _n|^2}e^{\frac{\mu }{2}\sum _n n^{2s}|\varphi _n|^2}\\\le & {} e^{-\frac{\mu \lambda }{2}} \int \frac{1}{(2\pi )^{2N+1}}\hbox {d}\varphi ^{\prime }_n \hbox {d}\bar{\varphi }^{\prime }_n e^{-\frac{1}{2}\sum _n\left| \varphi ^{\prime }_n\right| ^2}e^{\mu \sum _n n^{2(s-k)}|\varphi _n|^2}\\= & {} \exp \left[ -\frac{\mu \lambda }{2}-\frac{1}{2}\sum _{\begin{array}{c} |n|\le N, \\ n\ne 0 \end{array}}\ln \left( 1-\frac{\mu }{|n|^{\kappa }}\right) \right] , \end{aligned}$$

where again we have used the same change of variables as before. Note that now it is \(\kappa >1\). Since \(\frac{1}{2}\sum \nolimits _n\ln (1-\frac{\mu }{n^{\kappa }})\) is convergent for all \(\mu <1\) and \(\kappa >1\), we can choose \(\mu \in (0,1)\) and take the limit \(N\rightarrow \infty \). We get (6.4) by setting \(\mu =1{/}2\). \(\square \)

Equation (6.4) implies that \(\Vert u\Vert _{H^{q}}\) is bounded with probability 1 for every \(k<s-\frac{1}{2}\). This is sufficient to complete the proof of Proposition 6.1.

1.2 Quadratic forms

Then we present some results about quadratic forms of Gaussian random variables, used in the paper.

Proposition 6.5

Let \(k \ge 2\) and Q be a \((2N+1)\times (2N+1)\) matrix such that

$$\begin{aligned} \sup _{l,h } \frac{|Q_{l h}|}{\sqrt{1+h^{2k}}} =: T_k < + \infty \end{aligned}$$
(6.5)

Then for \(\lambda >0\)

$$\begin{aligned} \gamma _k\left( (\varphi ,Q\varphi )\ge \lambda \right) \lesssim e^{-\lambda {/}4T_k}. \end{aligned}$$
(6.6)

Proof

To begin with, we exploit the Markov inequality: For any \(\mu >0\)

$$\begin{aligned} \gamma _k\left( (\varphi ,Q\varphi )\ge \lambda \right) \le e^{-\mu \lambda }\mathbb {E}{e^{\mu (\varphi ,Q\varphi )}}. \end{aligned}$$
(6.7)

Now we compute

$$\begin{aligned} \mathbb {E}{e^{\mu (\varphi , Q \varphi )}}= & {} \int \prod _{|n|\le N}\left( \frac{1+n^{2k}}{\sqrt{2\pi }}\hbox {d}\varphi _n \hbox {d}\bar{\varphi }_n\right) \exp \left[ -\frac{1}{2}\sum _{i,j}\bar{\varphi }_i \left( (1+j^{2k})\delta _{ij}-2\mu Q_{ij}\right) \varphi _j\right] \nonumber \\= & {} \frac{1}{(2\pi )^{N}} \int \hbox {d}\varphi ^{\prime }_{-N}\ldots \hbox {d}\varphi ^{\prime }_N\bar{\varphi }^{\prime }_{-N}\ldots \hbox {d}\bar{\varphi }^{\prime }_N\exp \left[ -\frac{1}{2}\sum _{i,j}\bar{\varphi }^{\prime }_i\left( \delta _{ij}-2\mu Q_{ij}(k)\right) \varphi ^{\prime }_j\right] \nonumber \\= & {} e^{-\frac{1}{2}\ln \det ({\mathbb {I}}-2\mu Q(k))}. \end{aligned}$$
(6.8)

where we have performed the change of variables \(\varphi ^{\prime }_j=\sqrt{1+j^{2k}}\varphi _j\), \(\bar{\varphi }^{\prime }_j=\sqrt{1+j^{2k}}\bar{\varphi }_j\) and we have introduced \( Q_{ij}(k):=Q_{ij}{/}\sqrt{(1+j^{2k})(1+i^{2k})}\). We claim that

$$\begin{aligned} | {{\mathrm{Tr}}}((Q_{ij}(k))^{m}) | \lesssim T_{k}^{m}, \quad m \in {\mathbb {Z}}_{+}, \end{aligned}$$
(6.9)

so the expansion of the determinant

$$\begin{aligned} -\ln \det ({\mathbb {I}} - 2 \mu Q(k)) = \sum _{m=1}^{+\infty } \frac{(2 \mu )^{m} {{\mathrm{Tr}}}\left( ( Q_{ij}(k))^{m}\right) }{m} \end{aligned}$$

is convergent provided that \(\mu < \frac{1}{2 T_{k}}\). We choose \(\mu = \frac{1}{4T_{k}}\), so that (6.7, 6.8) imply the desired inequality. It remains to show the (6.9).

$$\begin{aligned} {{\mathrm{Tr}}}\left( (Q(k) )^{m}\right)= & {} \sum _{i_{1}, \ldots , i_{m+1}} Q_{i_{1} i_{2}}(k) \ldots Q_{i_{m} i_{m+1}}(k) \delta _{i_{1} i_{m+1}} \\= & {} \sum _{i_{1}, \ldots , i_{m+1}} \frac{ Q_{i_{1} i_{2}} \ldots Q_{i_{m} i_{m+1}} \delta _{i_{1} i_{m+1}} }{ \sqrt{ \left( 1+i_{1}^{2k}\right) \left( 1+i_{2}^{2k}\right) \left( 1+i_{2}^{2k}\right) \ldots \left( 1+i_{m}^{2k}\right) \left( 1+i_{m}^{2k}\right) \left( 1+i_{m+1}^{2k}\right) } } \\\le & {} T_{k}^{m}\sum _{i_{1},\ldots , i_{m+1}} \frac{ \delta _{i_{1}, i_{m+1}} }{ \sqrt{ \left( 1+i_{1}^{2k}\right) \ldots \left( 1+i_{m}^{2k}\right) } } \\= & {} T_{k}^{m}\sum _{i_{1}, \ldots , i_{m}} \frac{ 1 }{ \sqrt{\left( 1+i_{1}^{2k}\right) \ldots \left( 1+i_{m}^{2k}\right) } } \\= & {} T_{k}^{m}\left( \sum _{i} \frac{ 1 }{ \sqrt{ \left( 1+i^{2k}\right) } } \right) ^{m} \lesssim T_{k}^{m}, \end{aligned}$$

where we have used the assumption (6.5) in the first inequality and \(k \ge 2\) in the last inequality. \(\square \)

Remark 6.6

We observe that we can make different assumptions on the matrix Q and obtain similar inequalities. For instance, if the trace norm of Q(k) is finite uniformly in N, we have (see, for instance, Lemma 3.3 in [35])

$$\begin{aligned} -\ln \det \left( {\mathbb {I}} - 2 \mu Q(k)\right) \le \Vert Q(k)\Vert _{{{\mathrm{Tr}}}} \end{aligned}$$

and so for every N

$$\begin{aligned} \gamma _k\left( (\varphi , Q \varphi )\ge \lambda \right) \lesssim e^{-\lambda {/}\Vert Q(k) \Vert _{{{\mathrm{Tr}}}}}, \end{aligned}$$
(6.10)

by the same argument of the last proposition. If we assume the Hilbert-Schmidt norm of Q(k) to be finite uniformly in N, we obtain the Hanson–Wright inequality (see [16] and more recently [32]), holding for any N

$$\begin{aligned} \gamma _k\left( {{\mathrm{Var}}}(\varphi ,Q\varphi )\ge \lambda ^2\right) \lesssim e^{-c\min \left( \lambda ^2{/}\Vert Q(k)\Vert _{HS}, \lambda {/}\Vert Q(k)\Vert \right) }, \end{aligned}$$
(6.11)

where \(\Vert A\Vert \) denotes the operator norm of A and c is a positive constant.

Remark 6.7

For any linear operator \(A\varphi :=\sum \nolimits _{n=1}^N a_i \varphi _i\), with

$$\begin{aligned} {\mathcal {T}}_k:=\sum _{|i|\le N} \frac{|a_i|^2}{(1+i^{2k})}<\infty \quad {\text{ uniformly } \text{ in }}\,N, \end{aligned}$$

by using \(\gamma _k(|A\varphi |\ge \lambda )=\gamma _k(|A\varphi |^2\ge \lambda ^2)\) we can infer

$$\begin{aligned} \gamma _k\left( |A\varphi |\ge \lambda \right) \lesssim e^{-\lambda ^2{/}{\mathcal {T}}_k}. \end{aligned}$$
(6.12)

Note that if \(A\varphi =\varphi ^{(s)}\) we have \({\mathcal {T}}_k<\infty \) uniformly in N for \(s<k-\frac{1}{2}\). In this way we can improve Lemma 6.4, obtaining a sub-Gaussian decay.

Proposition 6.8

Let Q(x) be a \(N\times N\) matrix as before. Moreover, we assume Q(x) to be Hölder continuous w.r.t. \(x\in {\mathbb {T}}\) with exponent \(\alpha \) and constant \(L_N\), i.e.,

$$\begin{aligned} \left| (\varphi ,Q(x)\varphi )-(\varphi ,Q(y)\varphi )\right| \le L_N|x-y|^\alpha , \quad \mathrm{for\,every}\,\varphi \in {\mathbb {R}}^N. \end{aligned}$$
(6.13)

Then for any \(\varepsilon >0\) and \(\lambda \ge 2L_N \varepsilon ^\alpha \)

$$\begin{aligned} \gamma _k\left( \sup _{x}(\varphi ,Q\varphi )\ge \lambda \right) \lesssim \frac{e^{-\lambda {/}4T_k}}{\varepsilon }. \end{aligned}$$
(6.14)

Proof

We exploit Proposition 6.5 along with an \(\varepsilon \)-net argument. For \(\varepsilon >0\) we divide the interval \({\mathbb {T}}\) in \(1{/}\varepsilon \) points at distance \(\varepsilon \). We denote by \(x_j\) a point in the jth segment, and by \(x^*\) the point in which the maximum is attained. By Proposition 6.5 for each \(x\in {\mathbb {T}}\) we obtain for \(\lambda >0\)

$$\begin{aligned} \gamma _k\left( (\varphi ,Q(x)\varphi )\ge \lambda \right) \lesssim e^{-\lambda {/}4T_k}. \end{aligned}$$
(6.15)

Let \(j_0\) be such that \(|x_{j_0}-x^*|\le \varepsilon \). Therefore, it has to be

$$\begin{aligned} \left| \left( \varphi ,Q\left( x^*\right) \varphi \right) -\left( \varphi ,Q\left( x_{j_0}\right) \varphi \right) \right| \le L_N\varepsilon ^\alpha , \quad \text{ for } \text{ every } \,\varphi \in {\mathbb {R}}^N. \end{aligned}$$

Then we use the union bound for the probabilities:

$$\begin{aligned} \gamma _k\left( \left| Q\left( x^*\right) \right| \ge \lambda \right)\le & {} \sum _j \gamma _k\left( \left| Q\left( x^*\right) \right| \ge \lambda \, \Big |\, |x^*-x_j|\le \varepsilon \right) \\\le & {} \sum _j \gamma _k\left( \left| Q(x_j)\right| \ge \frac{\lambda }{2}\right) \\&+\,\sum _j \gamma _k\left( \left| Q(x_j)-Q\left( x^*\right) \right| \ge \frac{\lambda }{2}\Big | \left| x^*-x_j\right| \le \varepsilon \right) . \end{aligned}$$

We immediately see by (6.13) that the second addendum in the last formula is zero as soon as \(\lambda \ge 2L_N \varepsilon ^\alpha \). Therefore, we bound the first addendum by the total number of terms in the sum, which is \(\varepsilon ^{-1}\), times the estimate (6.15), so obtaining (6.14). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Genovese, G., Lucà, R. & Valeri, D. Gibbs measures associated to the integrals of motion of the periodic derivative nonlinear Schrödinger equation. Sel. Math. New Ser. 22, 1663–1702 (2016). https://doi.org/10.1007/s00029-016-0225-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-016-0225-2

Keywords

Mathematics Subject Classification

Navigation