Skip to main content
Log in

A note on the existence of stable vector bundles on Enriques surfaces

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We prove the non-emptiness and irreducibility of \(M_H(v,L)\), the moduli space of Gieseker semistable sheaves on an unnodal Enriques surface Y with primitive Mukai vector v of positive rank and determinant L with respect to a generic polarization H. This completes the chain of progress initiated by Kim (Nagoya Math J 150:85–94, 1998). We also show that the stable locus \(M^s_H(v)\ne \varnothing \) for non-primitive v with \(v^2>0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We work over \({\mathbb {C}}\) in this paper, so this is the correct definition.

  2. We can drop the prefix quasi by applying [9, Theorem 4.6.5] with B in their notation running through the sheaves \({\mathcal {O}}_Y,{\mathbb {C}}([\mathrm {pt}])\) and \({\mathcal {O}}_Y(D)\) for D such that \(D\cdot c_1(v)\) is minimal. Indeed, using the fact that \(\gcd (r,c_1,2s)=2\) and \(r+2s\equiv 2 (\mathop {\mathrm {mod}}\nolimits 4)\), one sees that \(\gcd ((v,v(B)))=1\) as B runs through these sheaves.

  3. Since \(\mu \)-stability and \(\mu \)-semistability are equivalent in our case, the fibers of the morphism \(M\rightarrow M^{\mu s s}\), in the notation of [9, Chapter 8], are precisely the fibers of the Hilbert–Chow morphism \(Y^{[l]}\rightarrow Y^{(l)}\). Thus the usual stratification of the Donaldson–Uhlenbeck compactification applies to M with the symmetric product replaced by the Hilbert scheme of points. See [9] for a more detailed discussion of what sheaves are identified in \(M^{\mu s s}\).

  4. When \(n_Q\) is odd, we instead use the estimate \(j\le n_Q+1+a\) as shown above in (11).

References

  1. Atiyah, M.: Vector bundles on an elliptic curve. Proc. Lond. Math. Soc. 3(7), 414–452 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beauville, A.: Variétés Kähleriennes dont la première classe de Chern est nulle. J. Differ. Geom. 18(4), 755–782 (1983)

  3. Banica, C., Putinar, M., Schumacher, G.: Variation der globalen Ext in Deformationen kompakter komplexer Räume. Math. Ann. 250(2), 135–155 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cossec, F., Dolgachev, I.: Enriques Surfaces I volume 76 of Progress in Mathematics. Birkhäuser Boston Inc, Boston (1989)

    Book  MATH  Google Scholar 

  5. Dolgachev, I., Hu, Y.: Variation of geometric invariant theory quotients. Inst. Hautes Études Sci. Publ. Math. 87(87), 5–56 (1998). With an appendix by Nicolas Ressayre. arXiv:math/9402008

  6. Friedman, R.: Rank two vector bundles over regular elliptic surfaces. Invent. Math. 96, 283–332 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Friedman, R.: Algebraic Surfaces and Holomorphic Vector Bundles, Universitext. Springer, New York (1998)

    Book  Google Scholar 

  8. Hauzer, M.: On moduli spaces of semistable sheaves on Enriques surfaces. Ann. Polon. Math. 99(3), 305–321 (2010). arXiv:1003.5857

  9. Huybrechts, D., Lehn, M.: The Geometry of Moduli Spaces of Sheaves, 2nd edn. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  10. Huybrechts, D.: Fourier–Mukai Transforms in Algebraic Geometry, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford (2006)

  11. Kim, H.: Moduli spaces of stable vector bundles on Enriques surfaces. Nagoya Math. J. 150, 85–94 (1998)

    MathSciNet  MATH  Google Scholar 

  12. Kim, H.: Stable vector bundles of rank two on Enriques Surfaces. J. Korean Math. Soc. 43(4), 765–782 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mukai, S.: Symplectic structure of the moduli space of sheaves on an abelian or K3 surface. Invent. Math. 77(1), 101–116 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mukai, S.: On the moduli space of bundles on K3 surfaces I. In: Vector Bundles on Algebraic Varieties (Bombay, 1984), volume 11 of Tate Inst. Fund. Res. Stud. Math., pp. 341–413. Tata Inst. Fund. Res., Bombay (1987)

  15. Matsuki, K., Wentworth, R.: Mumford–Thaddeus principle on the moduli space of vector bundles on an algebraic surface. Intern. J. Math. 8(1), 97–148 (1997). arXiv:alg-geom/9410016

  16. Nuer, H.: Projectivity and birational geometry of Bridgeland stable moduli on Enriques surfaces (2014). arXiv:1406.0908

  17. O’Grady, K.: The weight-two Hodge structure of moduli spaces of sheaves on a K3 surface. J. Algebr. Geom. 6, 599–644 (1997)

    MathSciNet  MATH  Google Scholar 

  18. Oguiso, K., Schröer, S.: Enriques manifolds. J. Reine Angew. Math. 661, 215–235 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Qin, Z.: Chamber structures of algebraic surfaces with Kodaira dimension zero and moduli spaces of stable rank two bundles. Math. Z. 207(1), 121–136 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Saccà, G.: Relative compactified Jacobians of linear systems on Enriques surfaces (2012). arXiv:1210.7519

  21. Thaddeus, M.: Geometric invariant theory and flips. J. Am. Math. Soc. 9(3), 691–723 (1996). arXiv:math/9405004

  22. Yamada, K.: Singularities and Kodaira dimension of moduli scheme of stable sheaves on Enriques surfaces. Kyoto J. Math. 53(1), 145–153 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yoshioka, K.: Moduli spaces of stable sheaves on abelian surfaces. Math. Ann. 321(4), 817–884 (2001). arXiv:math/0009001

  24. Yoshioka, K.: Twisted stability and Fourier–Mukai transform I. Compos. Math. 138(3), 261–288 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yoshioka, K.: A note on stable sheaves on Enriques surfaces (2014). arXiv:1410.1794

Download references

Acknowledgments

I would like to thank my advisor, Lev Borisov, for his constant support and guidance, especially in talking out ideas. I would also like to thank Dan Abramovich for a suggestion that helped the clarity of the exposition. Finally, I am very grateful to an anonymous referee for finding a mistake in the original argument. This led me not only to fix the mistake but also to prove irreducibility using a more geometric technique. The author was partially supported by NSF Grant DMS 1201466.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard Nuer.

Appendix: Dimension estimates for Brill–Noether loci on Hilbert schemes of points

Appendix: Dimension estimates for Brill–Noether loci on Hilbert schemes of points

We prove in this appendix the dimension estimate we used in the body of the paper. The result concerns bounding the dimension of the locus of 0-cycles with given cohomology with respect to a linear system.

Lemma 8.1

Let L be an effective divisor and \(S^i:=\{Z|h^0(I_Z(L))=i\}\subset Y^{(l)}\). Then for \(i>0\),

$$\begin{aligned} \mathop {\mathrm {dim}}\nolimits S^i\le \mathop {\mathrm {dim}}\nolimits |L|+l(Z)-(i-1). \end{aligned}$$

In particular, if L is ample, then \(\mathop {\mathrm {dim}}\nolimits |L|=\frac{1}{2}L^2\), so

$$\begin{aligned} \mathop {\mathrm {dim}}\nolimits S^i\le \frac{1}{2}L^2+1+l(Z)-i. \end{aligned}$$

Proof

Denote by \(S:=\{(Z,{\mathbb {C}}v)|{\mathbb {C}}v\in |I_Z(L)|\}\subset Y^{(l)}\times |L|\). Then the second projection

$$\begin{aligned} p_2: S\rightarrow |L|, \end{aligned}$$

is surjective with fibers of dimension l(Z). Indeed, for any \(C\in |L|\) the fiber over C is \(C^{(l)}\). Thus \(\mathop {\mathrm {dim}}\nolimits S=\mathop {\mathrm {dim}}\nolimits |L|+l(Z)\). The image of S under the first projection is

$$\begin{aligned} p_1(S)=\bigcup _{i>0} S^i, \end{aligned}$$

where the fiber over \(Z\in Y^{(l)}\) is \(|I_Z(L)|\). Thus \(p_1^{-1}(S^i)\) is a \({\mathbb {P}}^{i-1}\) bundle over \(S^i\), from which it follows that

$$\begin{aligned} \mathop {\mathrm {dim}}\nolimits S^i\le \mathop {\mathrm {dim}}\nolimits |L|+l(Z)-(i-1). \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nuer, H. A note on the existence of stable vector bundles on Enriques surfaces. Sel. Math. New Ser. 22, 1117–1156 (2016). https://doi.org/10.1007/s00029-015-0218-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-015-0218-6

Keywords

Mathematics Subject Classification

Navigation