Skip to main content
Log in

Differential symmetry breaking operators: II. Rankin–Cohen operators for symmetric pairs

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

Rankin–Cohen brackets are symmetry breaking operators for the tensor product of two holomorphic discrete series representations of \(SL(2,\mathbb {R})\). We address a general problem to find explicit formulæ  for such intertwining operators in the setting of multiplicity-free branching laws for reductive symmetric pairs. For this purpose, we use a new method (F-method) developed in Kobayashi and Pevzner (Sel. Math. New Ser., (2015). doi:10.1007/s00029-15-0207-9) and based on the algebraic Fourier transform for generalized Verma modules.

The method characterizes symmetry breaking operators by means of certain systems of partial differential equations of second order. We discover explicit formulæ  of new differential symmetry breaking operators for all the six different complex geometries arising from semisimple symmetric pairs of split rank one and reveal an intrinsic reason why the coefficients of orthogonal polynomials appear in these operators (Rankin–Cohen type) in the three geometries and why normal derivatives are symmetry breaking operators in the other three cases. Further, we analyze a new phenomenon that the multiplicities in the branching laws of Verma modules may jump up at singular parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ban, K.: On Rankin–Cohen–Ibukiyama operators for automorphic forms of several variables. Comment. Math. Univ. St. Pauli 55, 149–171 (2006)

    MathSciNet  MATH  Google Scholar 

  2. Bernstein, I.N., Gelfand, I.M., Gelfand, S.I.: A certain category of \({\mathfrak{g}}\)-modules. Funkcional. Anal. i Prilozhen. 10, 1–8 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bieliavsky, P., Tang, X., Yao, Y.: Rankin–Cohen brackets and formal quantization. Adv. Math. 212, 293–314 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Choie, Y., Lee, M.H.: Notes on Rankin–Cohen brackets. Ramanujan J. 25, 141–147 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cohen, H.: Sums involving the values at negative integers of \(L\)-functions of quadratic characters. Math. Ann. 217, 271–285 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cohen, P.B., Manin, Y., Zagier, D.: Automorphic pseudodifferential operators. In: Algebraic Aspects of Integrable Systems, vol. 26, pp. 17–47. Birkhäuser, Boston (1997)

  7. Connes, A., Moscovici, H.: Rankin–Cohen brackets and the Hopf algebra of transverse geometry. Mosc. Math. J. 4, 111–130 (2004)

    MathSciNet  MATH  Google Scholar 

  8. Dijk van, G., Pevzner,M.: Ring structures for holomorphic discrete series and Rankin-Cohen brackets. J. Lie Theory 17, 283–305 (2007)

  9. Eichler, M., Zagier, D.: The Theory of Jacobi Forms, vol. 55. Birkhäuser, Boston (1985)

    MATH  Google Scholar 

  10. Eholzer, W., Ibukiyama, T.: Rankin–Cohen type differential operators for Siegel modular forms. Int. J. Math. 9(4), 443–463 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. El Gradechi, A.: The Lie theory of the Rankin–Cohen brackets and allied bi-differential operators. Adv. Math. 207, 484–531 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions. Vol. I. Based, in Part, on Notes Left by Harry Bateman, xxvi+302. McGraw-Hill Book Company, Inc., New York (1953)

  13. Gordan, P.: Invariantentheorie. Teubner, Leipzig (1887)

    MATH  Google Scholar 

  14. Gundelfinger, S.: Zur der binären Formen. J. Reine Angew. Math. 100, 413–424 (1886)

    MathSciNet  MATH  Google Scholar 

  15. Harris, M., Jakobsen, H.P.: Singular holomorphic representations and singular modular forms. Math. Ann. 259, 227–244 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  16. Howe, R., Tan, E.: Non-abelian Harmonic Analysis. Applications of \(SL(2,{\mathbb{R}})\). Springer, New York (1992)

    Book  MATH  Google Scholar 

  17. Hua, L.K.: Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains. Amer. Math. Soc, Providence (1963)

    Google Scholar 

  18. Ibukiyama, T., Kuzumaki, T., Ochiai, H.: Holonomic systems of Gegenbauer type polynomials of matrix arguments related with Siegel modular forms. J. Math. Soc. Jpn. 64, 273–316 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jakobsen, H.P., Vergne, M.: Restrictions and extensions of holomorphic representations. J. Funct. Anal. 34, 29–53 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  20. Juhl, A.: Families of Conformally Covariant Differential Operators, \(Q\)-Curvature and Holography, vol. 275. Birkhäuser, Basel (2009)

    Book  MATH  Google Scholar 

  21. Kobayashi, T.: Discrete decomposability of the restriction of \(A_{{\mathfrak{q}}}(\lambda )\) with respect to reductive subgroups and its applications. Invent. Math. 117, 181–205 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kobayashi, T.: Discrete decomposability of the restriction of \(A_{\mathfrak{q}}(\lambda )\) with respect to reductive subgroups II–micro-local analysis and asymptotic \(K\)-support. Ann. Math. 147(2), 709–729 (1998)

    Article  MATH  Google Scholar 

  23. Kobayashi, T.: Discrete decomposability of the restriction of \(A_{\mathfrak{q}}(\lambda )\) with respect to reductive subgroups III-restriction of Harish–Chandra modules and associated varieties. Invent. Math. 131, 229–256 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kobayashi, T.: Multiplicity-Free Theorems of the Restrictions of Unitary Highest Weight Modules with Respect to Reductive Symmetric Pairs. In: Representation Theory and Automorphic Forms. Progr. Math., vol. 255, pp. 45–109. Birkhäuser, Boston (2008)

  25. Kobayashi, T.: Restrictions of generalized Verma modules to symmetric pairs. Transform. Groups 17, 523–546 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kobayashi, T., Ørsted, B., Somberg, P., Souček, V.: Branching laws for Verma modules and applications in parabolic geometry. Part I. Adv. Math. 285, 1796–1852 (2015)

  27. Kobayashi, T., Kubo, T., Pevzner, M.: Vector-valued covariant differential operators for the Möbius transformation. In: Dobrev, V. (ed.) Lie Theory and Its Applications in Physics. Springer Proceedings in Mathematics and Statistics, pp. 67–86. Springer, Berlin (2015)

    Google Scholar 

  28. Kobayashi, T., Pevzner, M.: Differential symmetry breaking operators. I. General theory and the F-method. Sel. Math. New Ser. (2015). doi:10.1007/s00029-15-0207-9

  29. Kobayashi, T., Speh, B.: Symmetry breaking for representations of rank one orthogonal groups. Mem. Am. Math. Soc. 238(1126), (2015). ISBN: 978-1-4704-1922-6. doi:10.1090/memo/1126. (Available also at arXiv:1310.3213.)

  30. Kostant, B.: On the existence and irreducibility of certain series of representations. Bull. Am. Math. Soc. 75, 627–642 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kuznetsov, N.V.: A new class of identities for the Fourier coefficients of modular forms. Acta Arith. 27, 505–519 (1975)

    MathSciNet  MATH  Google Scholar 

  32. Martin, F., Royer, E.: Rankin–Cohen brackets on quasimodular forms. J. Ramanujan Math. Soc. 24, 213–233 (2009)

    MathSciNet  MATH  Google Scholar 

  33. Molchanov, V.F.: Tensor products of unitary representations of the three-dimensional Lorentz group. Math. USSR Izv. 15, 113–143 (1980)

    Article  MATH  Google Scholar 

  34. Olver, P.J., Sanders, J.A.: Transvectants, modular forms, and the Heisenberg algebra. Adv. Appl. Math. 25, 252–283 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. Peng, L., Zhang, G.: Tensor products of holomorphic representations and bilinear differential operators. J. Funct. Anal. 210, 171–192 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. Pevzner, M.: Rankin–Cohen brackets and associativity. Lett. Math. Phys. 85, 195–202 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pevzner, M.: Rankin–Cohen brackets and representations of conformal groups. Ann. Math. Blaise Pascal 19, 455–484 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Rankin, R.A.: The construction of automorphic forms from the derivatives of a given form. J. Indian Math. Soc. 20, 103–116 (1956)

    MathSciNet  MATH  Google Scholar 

  39. Repka, J.: Tensor products of holomorphic discrete series representations. Can. J. Math. 31, 836–844 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  40. Schmid, W.: Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Räumen. Invent. Math. 9, 61–80 (1969/1970)

  41. Unterberger, A., Unterberger, J.: Algebras of symbols and modular forms. J. Anal. Math. 68, 121–143 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zagier, D.: Modular forms and differential operators. Proc. Indian Acad. Sci. (Math. Sci.) 104, 57–75 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhang, G.: Rankin–Cohen brackets, transvectants and covariant differential operators. Math. Z. 264, 513–519 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

T. Kobayashi was partially supported by Institut des Hautes Études Scientifiques, France, and Grant-in-Aid for Scientific Research (B) (22340026) and (A) (25247006), Japan Society for the Promotion of Science. Both authors were partially supported by Max Planck Institute for Mathematics (Bonn) where a large part of this work was done.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Kobayashi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobayashi, T., Pevzner, M. Differential symmetry breaking operators: II. Rankin–Cohen operators for symmetric pairs. Sel. Math. New Ser. 22, 847–911 (2016). https://doi.org/10.1007/s00029-015-0208-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-015-0208-8

Keywords

Mathematics Subject Classification

Navigation