Skip to main content
Log in

Dirac cohomology for symplectic reflection algebras

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We define uniformly the notions of Dirac operators and Dirac cohomology in the framework of the Hecke algebras introduced by Drinfeld (Anal i Prilozhen 20(1):69–70, 1986). We generalize in this way, the Dirac cohomology theory for Lusztig’s graded affine Hecke algebras defined in Barbasch et al. (Acta Math 209(2):197–227, 2012) and further developed in Barbasch et al. (Acta Math 209(2):197–227, 2012), Ciubotaru et al. (J Inst Math Jussieu 13(3):447–486, 2014), Ciubotaru (J Reine Angew Math 671:199–222, 2012), Ciubotaru and He (Green polynomials of Weyl groups, elliptic pairings, and the extended Dirac index, Adv. Math. 283:1–50, 2015), Chan (On a twisted Euler-Poincaré pairing for graded affine Hecke algebras, preprint 2014, arXiv:1407.0956). We apply these constructions to the case of the symplectic reflection algebras defined by Etingof and Ginzburg (Invent Math 147:243–348, 2002), particularly to rational Cherednik algebras for real or complex reflection groups. As applications, we give criteria for unitarity of modules in category \({\mathcal {O}}\) and we show that the 0-fiber of the Calogero–Moser space admits a description in terms of a certain “Dirac morphism” originally defined by Vogan for representations of real reductive groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atiyah, M., Schmid, W.: A geometric construction of the discrete series for semisimple Lie groups. Invent. Math. 42, 1–62 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barbasch, D., Ciubotaru, D., Trapa, P.: Dirac cohomology for graded affine Hecke algebras. Acta Math. 209(2), 197–227 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bellamy, G.: The Calogero–Moser partition for G(m, d, n). Nagoya Math. J. 207, 47–77 (2012)

    MATH  MathSciNet  Google Scholar 

  4. Brown, K.A., Gordon, I.: Poisson orders, symplectic reflection algebras and representation theory. J. Reine Angew. Math. 559, 193–216 (2003)

    MATH  MathSciNet  Google Scholar 

  5. Beynon, W., Lusztig, G.: Some numerical results on the characters of exceptional Weyl groups. Math. Proc. Cambridge Philos. Soc. 84(3), 417–426 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chan, K.Y.: Spin representations of real reflection groups of noncrystallographic root systems. J. Algebra 379, 333–354 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chan, K.Y.: On a twisted Euler-Poincaré pairing for graded affine Hecke algebras. preprint, arXiv:1407.0956 (2014)

  8. Ciubotaru, D.: Spin representations of Weyl groups and the Springer correspondence. J. Reine Angew. Math. 671, 199–222 (2012)

    MATH  MathSciNet  Google Scholar 

  9. Ciubotaru, D.: One-W-type modules for rational Cherednik algebra and cuspidal two-sided cells. preprint, arXiv:1503.07890 (2015)

  10. Ciubotaru, D., He, X.: Green polynomials of Weyl groups, elliptic pairings, and the extended Dirac index. Adv. Math. 283, 1–50 (2015)

    Article  MathSciNet  Google Scholar 

  11. Ciubotaru, D., Opdam, E., Trapa, P.: Algebraic and analytic Dirac induction for graded affine Hecke algebras. J. Inst. Math. Jussieu 13(3), 447–486 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ciubotaru, D., Trapa, P.: Characters of Springer representations on elliptic conjugacy classes. Duke Math. J. 162(2), 201–223 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ciubotaru, D., Trapa, P.: Dirac operators for rational Cherednik algebras at t=0. preprint, (2011)

  14. Cohen, A.M.: Finite quaternionic reflection groups. J. Algebra 64(2), 293–324 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  15. Drinfeld, V.: Degenerate affine Hecke algebras and Yangians. Funktsional. Anal. i Prilozhen. 20(1), 69–70 (1986)

    MathSciNet  Google Scholar 

  16. Etingof, P., Ginzburg, V.: Symplectic reflection algebras, Calogero–Moser space, and deformed Harish–Chandra homomorphism. Invent. Math. 147, 243–348 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Etingof, P., Stoica, E.: Unitary representations of rational Cherednik algebras, (with an appendix by Stephen Griffeth), Represent. Theory 13, 349–370 (2009)

    MATH  MathSciNet  Google Scholar 

  18. Gan, W.-L., Ginzburg, V.: Deformed preprojective algebras and symplectic reflection algebras for wreath products. J. Algebra 283(1), 350–363 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ginzburg, V., Guay, N., Opdam, E., Rouquier, R.: On the category O for rational Cherednik algebras. Invent. Math. 154(3), 617–651 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Gordon, I.: Baby Verma modules for rational Cherednik algebras. Bull. London Math. Soc. 35(3), 321–336 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Gordon, I., Martino, M.: Calogero–Moser space, restricted rational Cherednik algebras and two-sided cells. Math. Res. Lett. 16(2), 255–262 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Huang, J.-S., Pandžić, P.: Dirac cohomology, unitary representations and a proof of a conjecture of Vogan. J. Am. Math. Soc. 15, 185–202 (2002)

    Article  MATH  Google Scholar 

  23. Huang, J.-S., Pandžić, P.: Dirac operators in representation theory. Mathematics: Theory and Applications. Birkhäuser Boston, Inc., Boston (2006)

  24. Kazhdan, D., Kostant, B., Sternberg, S.: Hamiltonian group actions and dynamical systems of Calogero type. Comm. Pure Appl. Math. 31(4), 481–507 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kostant, B.: A cubic Dirac operator and the emergence of Euler number multiplets of representations for equal rank subgroups. Duke Math. J. 100(3), 447–501 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  26. Lusztig, G.: Affine Hecke algebras and their graded version. J. Am. Math. Soc. 2, 599–635 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  27. Lusztig, G.: Characters of Reductive Groups Over a Finite Field, Annals of Mathematics Studies, vol. 107. Princeton University Press, Princeton, NJ (1984)

    Google Scholar 

  28. Meinrenken, E.: Clifford Algebras and Lie Theory, [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 58. Springer, Heidelberg (2013)

    Google Scholar 

  29. Opdam, E.: A remark on the irreducible characters and fake degrees of finite real reflection groups. Invent. Math. 120(3), 447–454 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  30. Parthasarathy, R.: Dirac operator and the discrete series. Ann. Math. 96(2), 1–30 (1972)

    Article  MATH  Google Scholar 

  31. Ram, A., Shepler, A.: Classification of graded Hecke algebras for complex reflection groups. Comment. Math. Helv. 78(2), 308–334 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  32. Rouquier, R.: Familles et blocs d’algèbres de Hecke. C. R. Acad. Sci. Paris Sér. I Math. 329(12), 1037–1042 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  33. Vogan Jr, D.A.: Lectures on the Dirac operator I-III. M.I.T. (1997, unpublished notes)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Ciubotaru.

Additional information

It is a pleasure to thank B. Krötz and E. Opdam for the invitation to give a series of lectures on the theory of the Dirac operator for Hecke algebras at the Spring School “Representation theory and geometry of reductive groups”, Heiligkreuztal 2014, where some of these ideas crystallized. I also thank J.S. Huang, K.D. Wong, and the referee for corrections, helpful comments, and references.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciubotaru, D. Dirac cohomology for symplectic reflection algebras. Sel. Math. New Ser. 22, 111–144 (2016). https://doi.org/10.1007/s00029-015-0189-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-015-0189-7

Mathematics Subject Classification

Navigation