Skip to main content
Log in

Simple compactifications and polar decomposition of homogeneous real spherical spaces

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

Let \(Z\) be an algebraic homogeneous space \(Z=G/H\) attached to real reductive Lie group \(G\). We assume that \(Z\) is real spherical, i.e., minimal parabolic subgroups have open orbits on \(Z\). For such spaces, we investigate their large scale geometry and provide a polar decomposition. This is obtained from the existence of simple compactifications of \(Z\) which is established in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bien, F.: Orbits, multiplicities and differential operators. Representation theory of groups and algebras. Contemp. Math. 145, 199–227 (1993)

    Article  MathSciNet  Google Scholar 

  2. Bravi, P., Pezzini, G.: The spherical systems of the wonderful reductive subgroups, arXiv:1109.6777

  3. Brion, M.: Vers une généralisation des espaces symétriques. J. Alg. 134, 115–143 (1990)

    Article  MathSciNet  Google Scholar 

  4. Brion, M., Luna, D., Vust, Th: Espaces homogènes sphériques. Invent. Math. 84(3), 617–632 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brion, M., Pauer, F.: Valuations des espaces homogènes sphériques. Comment. Math. Helv. 62(2), 265–285 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Danielsen, T., Krötz, B., Schlichtkrull, H.: Decomposition theorems for triple spaces. Geom. Dedic. doi:10.1007/s10711-014-0008-x

  7. Eskin, A., McMullen, C.: Mixing, counting, and equidistribution in Lie groups. Duke Math. J. 71(1), 181–209 (1993)

    Article  MathSciNet  Google Scholar 

  8. Goodman, J.: Affine open subsets of algebraic varieties and ample divisors. Ann. Math. (2) 89, 160–183 (1969)

    Article  Google Scholar 

  9. Knop, F.: Automorphisms, root systems, and compactifications of homogeneous varieties. J. Am. Math. Soc. 9(1), 153–174 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Knop, F., Kraft, H., Luna, D., Vust, T.: Local properties of algebraic group actions. Algebraische Transformationsgruppen und Invariantentheorie. DMV Sem. 13, 63–75 (1989)

    MathSciNet  MATH  Google Scholar 

  11. Knop, F., Kraft, H., Vust, T.: The Picard group of a \(G\)-variety. Algebraische Transformationsgruppen und Invariantentheorie. DMV Sem. 13, 77–87 (1989)

    MathSciNet  Google Scholar 

  12. Knop, F., Krötz, B., Schlichtkrull, H.: The local structure theorem for real spherical spaces. arXiv:1310.6390

  13. Krötz, B., Sayag, E., Schlichtkrull, H.: Decay of matrix coefficients on reductive homogeneous spaces of spherical type. Math. Z. 278, 229–249 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Krötz, B., Schlichtkrull, H.: Finite orbit decomposition of real flag manifolds. J. Eur. Math. Soc. (to appear). arXiv:1307.2375

  15. Krötz, B., Schlichtkrull, H.: Multiplicity bounds and the subrepresentation theorem for real spherical spaces. Trans. Am. Math. Soc. (to appear). arXiv:1309.0930

  16. Sakellaridis, Y., Venkatesh, A.: Periods and harmonic analysis on spherical varieties. arXiv:1203.0039

Download references

Acknowledgments

We thank the anonymous referee for useful suggestions which led to an improvement of our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Schlichtkrull.

Additional information

B. Krötz was supported by ERC Advanced Investigators Grant HARG 268105. E. Sayag was partially supported by ISF 1138/10 and ERC 291612.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knop, F., Krötz, B., Sayag, E. et al. Simple compactifications and polar decomposition of homogeneous real spherical spaces. Sel. Math. New Ser. 21, 1071–1097 (2015). https://doi.org/10.1007/s00029-014-0174-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-014-0174-6

Keywords

Mathematics Subject Classification

Navigation