Skip to main content
Log in

\(P\)-alcoves, parabolic subalgebras and cocenters of affine Hecke algebras

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

The cocenter of an affine Hecke algebra plays an important role in the study of representations of the affine Hecke algebra and the geometry of affine Deligne–Lusztig varieties (see for example, He and Nie in Compos Math 150(11):1903–1927, 2014; He in Ann Math 179:367–404, 2014; Ciubotaru and He in Cocenter and representations of affine Hecke algebras, 2014). In this paper, we give a Bernstein–Lusztig type presentation of the cocenter. We also obtain a comparison theorem between the class polynomials of the affine Hecke algebra and those of its parabolic subalgebras, which is an algebraic analog of the Hodge–Newton decomposition theorem for affine Deligne–Lusztig varieties. As a consequence, we present a new proof of the emptiness pattern of affine Deligne–Lusztig varieties (Görtz et al. in Compos Math 146(5):1339–1382, 2010; Görtz et al. in Ann Sci Ècole Norm Sup, 2012).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. There is a more complicated formula for \(\alpha ^\vee \in 2 Y\) as well. However, we do not need it in this paper.

  2. In fact, for \({\tilde{w}}\in X \rtimes W_0\) and \(\delta \in \Gamma \), \({\tilde{w}}\delta \) is a \((J, z)\)-alcove element if and only if \({\tilde{w}}C_0\) is a \((J, z^{-1}, \delta )\)-alcove in [4, §4.1]. This is a generalization of the \(P\)-alcove introduced in [5].

References

  1. Bernstein, J., Deligne, P., Kazhdan, D.: Trace Paley–Wiener theorem for reductive \(p\)-adic groups. J. d’Anal. Math. 47, 180–192 (1986)

    Article  MathSciNet  Google Scholar 

  2. Ciubotaru, D., He, X.: Cocenter and representations of affine Hecke algebras, arXiv:1409.0902 (2014)

  3. Ciubotaru, D., He, X.: The cocenter of graded affine Hecke algebra and the density theorem, arXiv:1208.0914 (2012)

  4. Görtz, U., Hem, X., Nie, S.: \(P\)-alcoves and nonemptiness of affine Deligne–Lusztig varieties. Ann. Sci. Ècole Norm. Sup. (To appear); arXiv:1211.3784 (2012)

  5. Görtz, U., Haines, T., Kottwitz, R., Reuman, D.: Affine Deligne–Lusztig varieties in affine flag varieties. Compos. Math. 146(5), 1339–1382 (2010)

    Article  MathSciNet  Google Scholar 

  6. He, X., Nie, S.: Minimal length elements of extended affine Weyl groups. Compos. Math. 150(11), 1903–1927 (2014)

  7. He, X.: Minimal length elements in some double cosets of Coxeter groups. Adv. Math. 215(2), 469–503 (2007)

    Article  MathSciNet  Google Scholar 

  8. He, X., Nie, S.: Minimal length elements of finite Coxeter groups. Duke Math. J. 161, 2945–2967 (2012)

    Article  MathSciNet  Google Scholar 

  9. He, X.: Geometric and homological properties of affine Deligne–Lusztig varieties. Ann. Math. 179, 367–404 (2014)

    Article  Google Scholar 

  10. Iwahori, N., Matsumoto, H.: On some Bruhat decomposition and the structure of the Hecke rings of p-adic Chevalley groups. Inst. Hautes Études Sci. Publ. Math. 25, 5–48 (1965)

    Article  MathSciNet  Google Scholar 

  11. Kazhdan, D.: Representations groups over close local fields. J. d’Anal. Math. 47, 175–179 (1986)

    Article  MathSciNet  Google Scholar 

  12. Kottwitz, R.: Isocrystals with additional structure. II. Compos. Math. 109, 255–339 (1997)

    Article  MathSciNet  Google Scholar 

  13. Lusztig, G.: Parabolic character sheaves. I. Mosc. Math. J. 4(1), 153–179 (2004)

  14. Lusztig, G.: Affine Hecke algebras and their graded version. J. Am. Math. Soc. 2, 599–635 (1989)

    Article  MathSciNet  Google Scholar 

  15. Lusztig, G.: Hecke Algebras with Unequal Parameters, CRM Monograph Series, 18. American Mathematical Society, Providence (2003)

    Google Scholar 

  16. Opdam, E., Solleveld, M.: Homological algebra for affine Hecke algebras. Adv. Math. 220(5), 1549–1601 (2009)

    Article  MathSciNet  Google Scholar 

  17. Opdam, E., Solleveld, M.: Discrete series characters for affine Hecke algebras and their formal degrees. Acta Math. 205, 105–187 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank the referee for his/her thorough review and many useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuhua He.

Additional information

Xuhua He was partially supported by HKRGC grant 602011.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Nie, S. \(P\)-alcoves, parabolic subalgebras and cocenters of affine Hecke algebras. Sel. Math. New Ser. 21, 995–1019 (2015). https://doi.org/10.1007/s00029-014-0170-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-014-0170-x

Keywords

Mathematics Subject Classification

Navigation