Skip to main content
Log in

On uniqueness of tensor products of irreducible categorifications

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

In this paper, we propose an axiomatic definition for a tensor product categorification. A tensor product categorification is an abelian category with a categorical action of a Kac–Moody algebra \({\mathfrak {g}}\) in the sense of Rouquier or Khovanov–Lauda whose Grothendieck group is isomorphic to a tensor product of simple modules. However, we require a much stronger structure than a mere isomorphism of representations; most importantly, each such categorical representation must have a standardly stratified structure compatible with the categorification functors, and with combinatorics matching those of the tensor product. With these stronger conditions, we recover a uniqueness theorem similar in flavor to that of Rouquier for categorifications of simple modules. Furthermore, we already know of an example of such a categorification: the representation category of an algebra \(T^{\underline{\varvec{\lambda }}}\) previously defined by the second author using generators and relations. Next, we show that tensor product categorifications give a categorical realization of tensor product crystals analogous to that for simple crystals given by cyclotomic quotients of KLR algebras. Examples of such categories are also readily found in more classical representation theory; for finite and affine type A, tensor product categorifications can be realized as quotients of the representation categories of cyclotomic \(q\)-Schur algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Berenstein, A., Kazhdan, D.: Geometric and unipotent crystals. II. From unipotent bicrystals to crystal bases. Quantum groups, Contemp. Math, vol. 433, pp. 13–88. Amer. Math. Soc., Providence (2007)

    Google Scholar 

  2. Brundan, J., Losev, I., Webster, B.: Tensor product categorifications and the super Kazhdan–Lusztig conjecture. arXiv:1310.0349

  3. Cautis, S., Lauda, A.: Implicit structure in 2-representations of quantum groups. arXiv:1111.1431, to appear in Selecta Math

  4. Cline, E., Parshall, B., Scott, L.: Stratifying endomorphism algebras. Mem. Am. Math. Soc. 124(591), viii+119 (1996)

    MathSciNet  Google Scholar 

  5. Chuang, J., Rouquier, R.: Derived equivalences for symmetric groups and \({\mathfrak{sl}}_2\)-categorification. Ann. Math. (2) 167(1), 245–298 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Hong, J., Yacobi, O.: Polynomial representations of general linear groups and categorifications of Fock space. Algebr. Represent. Theory 16(5), 1273–1311 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. Khovanov, M., Lauda, A.D.: A diagrammatic approach to categorification of quantum groups. I. Represent. Theory 13, 309–347 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Khovanov, M., Lauda, A.D.: A categorification of quantum \({\rm sl}(n)\). Quantum Topol. 1(1), 1–92 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Lauda, A.D.: A categorification of quantum \({\rm sl}(2)\). Adv. Math. 225(6), 3327–3424 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Losev, I.: Highest weight \({\mathfrak{sl}}_2\)-categorifications I: crystals. Math. Z. 274(3–4), 1231–1247 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Losev, I.: Highest weight \({\mathfrak{sl}}_2\)-categorifications II: structure theory. arXiv:1203.5545, accepted by Trans. Am. Math. Soc

  12. Lauda, A.D., Vazirani, M.: Crystals from categorified quantum groups. Adv. Math. 228(2), 803–861 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Rouquier, R.: 2-Kac–Moody algebras. arXiv:0812.5023

  14. Rouquier, R.: Quiver Hecke algebras and 2-Lie algebras. Algebra Colloq. 19(2), 359–410 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Shan, P.: Crystals of Fock spaces and cyclotomic rational double affine Hecke algebras. Ann. Sci. Éc. Norm. Supér. (4) 44(1), 147–182 (2011)

    MATH  Google Scholar 

  16. Soergel, W.: Kategorie \({\cal {O}}\), perverse Garben und Moduln über den Koinvarianten zur Weylgruppe. J. Am. Math. Soc. 3(2), 421–445 (1990)

    MATH  MathSciNet  Google Scholar 

  17. Webster, B.: Knot invariants and higher representation theory. arXiv:1309.3796

  18. Webster, B.: Rouquier’s conjecture and diagrammatic algebra. arXiv:1306.0074

Download references

Acknowledgments

I. L. was supported by the NSF under Grant DMS-1161584. B. W. was supported by the NSF under Grant DMS-1151473.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Losev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Losev, I., Webster, B. On uniqueness of tensor products of irreducible categorifications. Sel. Math. New Ser. 21, 345–377 (2015). https://doi.org/10.1007/s00029-014-0172-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-014-0172-8

Keywords

Mathematics Subject Classification

Navigation