Skip to main content
Log in

Implicit structure in 2-representations of quantum groups

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

Given a strong 2-representation of a Kac–Moody Lie algebra (in the sense of Rouquier), we show how to extend it to a 2-representation of categorified quantum groups (in the sense of Khovanov–Lauda). This involves checking certain extra 2-relations, which are explicit in the definition by Khovanov–Lauda and, as it turns out, implicit in Rouquier’s definition. Some applications are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The KLR algebra is also called the quiver Hecke algebra in the literature.

References

  1. Beliakova, A., Khovanov, M., Lauda, A.D.: A categorification of the Casimir of quantum \({\mathfrak{sl}}_2\). Adv. Math. 230(3), 1442–1501 (2012). arXiv:1008.0370

  2. Bernstein, J., Frenkel, I.B., Khovanov, M.: A categorification of the Temperley-Lieb algebra and Schur quotients of U(\({\mathfrak{sl}}_2\)) via projective and Zuckerman functors. Sel. Math. (N.S.) 5(2), 199–241 (1999)

  3. Brundan, J., Kleshchev, A.: Graded decomposition numbers for cyclotomic Hecke algebras. Adv. Math. 222(6), 1883–1942 (2009). arXiv:0901.4450

  4. Brundan, J., Stroppel, C.: Highest weight categories arising from Khovanov’s diagram algebra III: category \({\mathfrak{O}}\). Represent. Theory 15, 170–243 (2011). arXiv:0812.1090

  5. Cautis, S.: Clasp technology to knot homology via the affine Grassmannian (2012). arXiv:1207.2074

  6. Cautis, S., Kamnitzer, J.: Braiding via geometric Lie algebra actions. Compos. Math. 148(2), 464–506 (2012). arXiv:1001.0619

  7. Cautis, S., Kamnitzer, J., Licata, A.: Derived equivalences for cotangent bundles of grassmannians via categorical \({\mathfrak{sl}}_2\) actions, 2009. J. Reine Angew. Math. 675, 53–99 (2013). arXiv:0902.1797

  8. Cautis, S., Kamnitzer, J., Licata, A.: Categorical geometric skew Howe duality. Invent. Math. 180(1), 111–159 (2010). math.AG/0902.1795

  9. Cautis, S., Kamnitzer, J., Licata, A.: Coherent sheaves and categorical \({\mathfrak{sl}}_2\) actions. Duke Math. J. 154(1), 135–179 (2010). arXiv:0902.1796

  10. Cautis, S., Kamnitzer, J., Licata, A.: Coherent sheaves on quiver varieties and categorification. Math. Annalen 357(3), 805–854 (2013). arXiv:1104.0352

  11. Chuang, J., Rouquier, R.: Derived equivalences for symmetric groups and \({\mathfrak{sl}}_2\) categorification. Ann Math. 167, 245–298 (2008). math.RT/0407205

  12. Kang, S.J., Kashiwara, M.: Categorification of highest weight modules via Khovanov–Lauda–Rouquier algebras (2011). arXiv:1102.4677

  13. Kang, S.J., Park, E.: Irreducible modules over Khovanov–Lauda–Rouquier algebras of type \({A}_n\) and semistandard tableaux (2010). arXiv:1005.1373

  14. Khovanov, M., Lauda, A.: A diagrammatic approach to categorification of quantum groups I. Represent. Theory 13, 309–347 (2009). math.QA/0803.4121

  15. Khovanov, M., Lauda, A.: A diagrammatic approach to categorification of quantum groups III. Quantum Topol 1, 1–92 (2010). math.QA/0807.3250

  16. Khovanov, M., Lauda, A.: A diagrammatic approach to categorification of quantum groups II. Trans. Am. Math. Soc. 363, 2685–2700 (2011). math.QA/0804.2080

  17. Kleshchev, A., Ram, A.: Homogeneous representations of Khovanov–Lauda algebras. J. Eur. Math. Soc. (JEMS) 12(5), 1293–1306 (2010). arXiv:0809.0557

  18. Kleshchev, A., Ram, A.: Representations of Khovanov–Lauda–Rouquier algebras and combinatorics of Lyndon words. Math. Ann. 349(4), 943–975 (2011). arXiv:0909.1984

  19. Lauda, A.D.: A categorification of quantum \({\mathfrak{sl}}_2\). Adv. Math. 225, 3327–3424 (2008). math.QA/0803.3652

  20. Lauda, A.D.: Categorified quantum \({\mathfrak{sl}}_2\) and equivariant cohomology of iterated flag varieties. Algebr. Represent. Theory 1–30 (2009). math.QA/0803.3848

  21. Lauda, A.D: An introduction to diagrammatic algebra and categorified quantum \({\mathfrak{sl}}_2\). Bull. Inst. Math. Acad. Sin. 7, 165–270 (2012). arXiv:1106.2128

  22. Lauda, A.D., Vazirani, M.: Crystals for categorified quantum groups. Adv. Math. 228(2), 803–861 (2011). math.RT/0909.1810

  23. Ringel, C.: Tame algebras and integral quadratic forms. Lecture Notes in Mathematics, 1099 (1984)

  24. Rouquier, R.: 2-Kac-Moody algebras (2008). arXiv:0812.5023

  25. Webster, B.: Knot invariants and higher representation theory I: diagrammatic and geometric categorification of tensor products (2010). arXiv:1001.2020

Download references

Acknowledgments

The authors would like to thank Mikhail Khovanov, Anthony Licata, Joshua Sussan and Ben Webster for helpful discussions and Masaki Kashiwara for helpful correspondences. S.C. was supported by NSF grants DMS-0964439, DMS-1101439, and the Alfred P. Sloan foundation. A.L. was supported by the NSF grants DMS-0739392, DMS-0855713, and the Alfred P. Sloan foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabin Cautis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cautis, S., Lauda, A.D. Implicit structure in 2-representations of quantum groups. Sel. Math. New Ser. 21, 201–244 (2015). https://doi.org/10.1007/s00029-014-0162-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-014-0162-x

Keywords

Mathematics Subject Classification (2000)

Navigation