Skip to main content
Log in

Formal Hecke algebras and algebraic oriented cohomology theories

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

An Erratum to this article was published on 08 October 2014

Abstract

In the present paper, we generalize the construction of the nil Hecke ring of Kostant–Kumar to the context of an arbitrary formal group law, in particular, to an arbitrary algebraic oriented cohomology theory of Levine–Morel and Panin–Smirnov (e.g., to Chow groups, Grothendieck’s \(K_0\), connective \(K\)-theory, elliptic cohomology, and algebraic cobordism). The resulting object, which we call a formal (affine) Demazure algebra, is parameterized by a one-dimensional commutative formal group law and has the following important property: specialization to the additive and multiplicative periodic formal group laws yields completions of the nil Hecke and the 0-Hecke rings, respectively. We also introduce a formal (affine) Hecke algebra. We show that the specialization of the formal (affine) Hecke algebra to the additive and multiplicative periodic formal group laws gives completions of the degenerate (affine) Hecke algebra and the usual (affine) Hecke algebra, respectively. We show that all formal affine Demazure algebras (and all formal affine Hecke algebras) become isomorphic over certain coefficient rings, proving an analogue of a result of Lusztig.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bressler, P., Evens, S.: The Schubert calculus, braid relations, and generalized cohomology. Trans. Am. Math. Soc. 317(2), 799–811 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bourbaki, N.: Éléments de Mathématique. Masson, Paris (1981). Groupes et algèbres de Lie. Chapitres 4, 5 et 6. [Lie groups and Lie algebras. Chapters 4, 5 and 6]

  3. Chriss, N., Ginzburg, V.: Representation Theory and Complex Geometry. Modern Birkhäuser Classics. Birkhäuser, Boston (2010) [Reprint of the 1997 edition]

  4. Cherednik, I., Markov, Y., Howe, R., Lusztig, G.: Iwahori–Hecke Algebras and Their Representation Theory, volume 1804 of Lecture Notes in Mathematics. Springer, Berlin (2002). Lectures from the C.I.M.E. Summer School held in Martina-Franca, June 28–July 6, 1999, Edited by M. Welleda Baldoni and Dan Barbasch

  5. Calmès, B., Petrov, V., Zainoulline, K.: Invariants, torsion indices and oriented cohomology of complete flags. Ann. Sci. Éc. Norm. Supér. (4), 46(3) (2013) (preprint available at arXiv:0905.1341v2 [math.AG])

  6. Calmés, B., Zainoulline, K., Zhong, C.: A Coproduct Structure on the Formal Affine Demazure Algebra. arXiv:arXiv:1209.1676 [math.RA]

  7. Demazure, M.: Invariants symétriques entiers des groupes de Weyl et torsion. Invent. Math. 21, 287–301 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  8. Demazure, M.: Désingularisation des variétés de Schubert généralisées. Ann. Sci. École Norm. Sup. (4), 7, 53–88 (1974). [Collection of articles dedicated to Henri Cartan on the occasion of his 70th birthday, I]

  9. Evens, S., Bressler, P.: On certain Hecke rings. Proc. Nat. Acad. Sci. USA 84(3), 624–625 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fröhlich, A.: Formal Groups. Lecture Notes in Mathematics, No. 74. Springer, Berlin (1968)

  11. Ginzburg, V.: Geometric Methods in the Representation Theory of Hecke Algebras and Quantum Groups (Notes by V. Baranovsky). arXiv:math/9802004v3 [math.AG]

  12. Ginzburg, V., Kapranov, M., Vasserot, E.: Elliptic Algebras and Equivariant Elliptic Cohomology. arXiv:q-alg/9505012

  13. Ginzburg, V., Kapranov, M., Vasserot, E.: Residue construction of Hecke algebras. Adv. Math. 128(1), 1–19 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gille, S., Zainoulline, K.: Equivariant pretheories and invariants of torsors. Transform. Groups 17(2), 471–498 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Humphreys, J.E.: Reflection Groups and Coxeter Groups, Volume 29 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  16. Kac, V.G.: Infinite-Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  17. Kostant, B., Kumar, S.: The nil Hecke ring and cohomology of \(G/P\) for a Kac-Moody group \(G\). Adv. Math. 62(3), 187–237 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kleshchev, A.: Linear and Projective Representations of Symmetric Groups, Volume 163 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  19. Lang, S.: Elliptic Functions, Volume 112 of Graduate Texts in Mathematics, 2nd edn. Springer, New York (1987). [With an appendix by J. Tate]

  20. Levine, M., Morel, F.: Algebraic Cobordism. Springer Monographs in Mathematics. Springer, Berlin (2007)

    Google Scholar 

  21. Lusztig, G.: Equivariant \(K\)-theory and representations of Hecke algebras. Proc. Am. Math. Soc. 94(2), 337–342 (1985)

    MathSciNet  MATH  Google Scholar 

  22. Lusztig, G.: Affine Hecke algebras and their graded version. J. Am. Math. Soc. 2(3), 599–635 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Panin, I.: Oriented cohomology theories of algebraic varieties. \(K\)-Theory 30(3), 265–314 (2003). [Special issue in honor of Hyman Bass on his seventieth birthday. Part III]

  24. Pittie, H., Ram, A.: A Pieri–Chevalley formula in the \(K\)-theory of a \(G/B\)-bundle. Electron. Res. Announc. Am. Math. Soc. 5, 102–107 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rouquier, R.: 2-Kac-Moody Algebras. arXiv:math/0812.5023v1 [math.RT]

  26. Silverman, J.H.: The Arithmetic of Elliptic Curves, Volume 106 of Graduate Texts in Mathematics, 2nd edn. Springer, Dordrecht (2009)

    Book  Google Scholar 

  27. Tate, J.T.: The arithmetic of elliptic curves. Invent. Math. 23, 179–206 (1974)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Sam Evens, Iain Gordon, Anthony Licata, and Erhard Neher for useful discussions. They would also like to thank Changlong Zhong for sharing with them some of his computations. The work of the second two authors was supported by Discovery Grants from the Natural Sciences and Engineering Research Council of Canada. The first two authors were supported by the Discovery Grants of the last two. The first author was also partially supported by funds from the Centre de Recherches Mathématiques, and the last author was also supported by an Early Researcher Award from the Government of Ontario.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alistair Savage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffnung, A., Malagón-López, J., Savage, A. et al. Formal Hecke algebras and algebraic oriented cohomology theories. Sel. Math. New Ser. 20, 1213–1245 (2014). https://doi.org/10.1007/s00029-013-0132-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-013-0132-8

Keywords

Mathematics Subject Classification (1991)

Navigation