Skip to main content
Log in

Minimum degree of the difference of two polynomials over \({\mathbb Q}\), and weighted plane trees

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

A weighted bicolored plane tree (or just tree for short) is a bicolored plane tree whose edges are endowed with positive integral weights. The degree of a vertex is defined as the sum of the weights of the edges incident to this vertex. Using the theory of dessins d’enfants, which studies the action of the absolute Galois group on graphs embedded into Riemann surfaces, we show that a weighted plane tree is a graphical representation of a pair of coprime polynomials \(P,Q\in {\mathbb C}\,[x]\) such that: (a) \(\deg P = \deg Q\), and \(P\) and \(Q\) have the same leading coefficient; (b) the multiplicities of the roots of \(P\) (respectively, of \(Q\)) are equal to the degrees of the black (respectively, white) vertices of the corresponding tree; (c) the degree of the difference \(P-Q\) attains the minimum which is possible for the given multiplicities of the roots of \(P\) and \(Q\). Moreover, if a tree in question is uniquely determined by the set of its black and white vertex degrees (we call such trees unitrees), then the corresponding polynomials are defined over \({\mathbb Q}\). The pairs of polynomials \(P,Q\) such that the degree of the difference \(P-Q\) attains the minimum, and especially those defined over \({\mathbb Q}\), are related to some important questions of number theory. Dozens of papers, from 1965 (Birch et al. in Norske Vid Selsk Forh 38:65–69, 1965) to 2010 (Beukers and Stewart in J Number Theory 130:660–679, 2010), were dedicated to their study. The main result of this paper is a complete classification of the unitrees, which provides us with the most massive class of such pairs defined over \({\mathbb Q}\). We also study combinatorial invariants of the Galois action on trees, as well as on the corresponding polynomial pairs, which permit us to find yet more examples defined over \({\mathbb Q}\). In a subsequent paper, we compute the polynomials \(P,Q\) corresponding to all the unitrees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61

Similar content being viewed by others

References

  1. Adrianov, N.M.: On plane trees with a prescribed number of valency set realizations (in Russian). Fundam. Prikl. Mat. 13(6), 9–17 (2007)

    Google Scholar 

  2. Adrianov, N.M., Kochetkov, Yu.Yu., Suvorov, A.D.: Plane trees with special primitive edge rotation groups (in Russian). Fundam. Prikl. Mat. 3(4), 1085–1092 (1997)

  3. Adrianov, N.M., Zvonkin, A.K.: Primitive monodromy groups of weighted trees. In preparation (2014)

  4. Beukers, F., Stewart, C.L.: Neighboring powers. J. Number Theory 130, 660–679 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Birch, B.J., Chowla, S., Hall Jr, M., Schinzel, A.: On the difference \(x^3-y^2\). Norske Vid. Selsk. Forh. (Trondheim) 38, 65–69 (1965)

    MathSciNet  MATH  Google Scholar 

  6. Butler, G., McKay, J.: The transitive groups of degree up to eleven. Commun. Algebra 11(8), 863–911 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Corvaja, P., Petronio, C., Zannier, U.: On certain permutation groups and sums of two squares. Preprint (2008). arXiv:0810.0591v1

  8. Couveignes, J.-M.: Calcul et rationalité de fonctions de Belyi en genre 0. Ann. de l’Inst. Fourier 44(1), 1–38 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Davenport, H.: On \(f^3(t)-g^2(t)\). Norske Vid. Selsk. Forh. (Trondheim) 38, 86–87 (1965)

    MathSciNet  MATH  Google Scholar 

  10. Edmonds, A.L., Kulkarni, R.S., Stong, R.E.: Realizability of branched coverings of surfaces. Trans. Am. Math. Soc. 282(2), 773–790 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  11. Elkies, N.D.: Rational points near curves and small non-zero \(|x^3-y^2|\) via lattice reduction. In: Bosma, W. (ed.) Algorithmic Number Theory, volume 1838 of the Lect. Notes in Comp. Sci., pp. 33–63. Springer (2000)

  12. Girondo, E., González-Diez, G.: Introduction to Compact Riemann Surfaces and Dessins d’Enfants. London Math. Soc. Student Texts, vol. 79. Cambridge University Press (2012)

  13. Goulden, I.P., Jackson, D.M.: The combinatorial relationship between trees, cacti and certain connection coefficients for the symmetric group. Eur. J. Comb. 13, 357–365 (1992)

  14. Hurwitz, A.: Über Riemann’sche Flächen mit gegebenen Verzweigungspunkten. Math. Ann. 39, 1–61 (1891)

    Article  MathSciNet  MATH  Google Scholar 

  15. Husemoller, D.: Ramified coverings of Riemann surfaces. Duke Math. J. 29, 167–174 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jones, G.A.: Primitive permutation groups containing a cycle. Preprint (2012). arXiv:1209.5169v1. To appear in the Bull. Austr. Math. Soc.

  17. Jordan, C.: Théorèmes sur les groupes primitifs. J. Math. Pures Appl. 16, 383–408 (1871)

    MATH  Google Scholar 

  18. Kochetkov, Y.: Enumeration of one class of plane weighted trees. Preprint (2013). arXiv:1310.6208v1

  19. Lando, S.K., Zvonkin, A.K.: Graphs on Surfaces and Their Applications. Springer, New York (2004)

    Book  MATH  Google Scholar 

  20. Pakovich, F.: Solution of the Hurwitz problem for Laurent polynomials. J. Knot Theory Ramif. 18, 271–302 (2009)

  21. Pakovich, F., Zvonkin, A.K.: Minimum Degree of the Difference of Two Polynomials over \({\mathbb{Q}}\). Part II Davenport–Zannier Triples. In preparation (2014)

  22. Pascali, M.A., Petronio, C.: Surface branched covers and geometric 2-orbifolds. Trans. Am. Math. Soc. 361(11), 5885–5920 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Schneps, L. (ed.): The Grothendieck Theory of Dessins d’Enfants. volume 200 of the London Math. Soc. Lecture Notes Series. Cambridge University Press (1994)

  24. Shioda, T.: Elliptic surfaces and Davenport-Stothers triples. Preprint (2004)

  25. Stothers, W.W.: Polynomial identities and Hauptmoduln. Q. J. Math. Oxf. (Ser. 2) 32(127), 349–370 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  26. The On-Line Encyclopedia of Integer Sequences. http://oeis.org/

  27. Thom, R.: L’équivalence d’une fonction différentiable et d’un polynôme. Topology 3, 297–307 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tutte, W.T.: The number of planted plane trees with a given partition. Am. Math. Mon. 71(3), 272–277 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zannier, U.: On Davenport’s bound for the degree of \(f^3-g^2\) and Riemann’s existence theorem. Acta Arith. 71(2), 107–137 (1995)

    MathSciNet  MATH  Google Scholar 

  30. Zvonkin, A.K.: Enumeration of weighted plane trees. Preprint (2013). http://www.labri.fr/perso/zvonkin/

  31. Zvonkin, A. K.: Diophantine invariants in dessins d’enfants: an example. Preprint (2013). http://www.labri.fr/perso/zvonkin/

Download references

Acknowledgments

Fedor Pakovich is grateful to the Bordeaux University, France, and Alexander Zvonkin is grateful to the Center for Advanced Studies in Mathematics of the Ben-Gurion University of the Negev, Israel, for their mutual hospitality. Fedor Pakovich is grateful to the Max-Planck-Institut für Mathematik, Bonn, where the most part of this paper was written. We would also like to thank Nikolai Adrianov and Gareth Jones for valuable remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander K. Zvonkin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pakovich, F., Zvonkin, A.K. Minimum degree of the difference of two polynomials over \({\mathbb Q}\), and weighted plane trees. Sel. Math. New Ser. 20, 1003–1065 (2014). https://doi.org/10.1007/s00029-014-0151-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-014-0151-0

Keywords

Mathematics Subject Classification (2010)

Navigation